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Data-Parallel Computation



Ex: Word count using partial aggregation

1. Compute word counts from individual files
2. Then merge intermediate output

3. Compute word count on merged outputs



How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

Putting it together...
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How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

Synchronization
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Fault Tolerance in MapReduce

Map worker writes intermediate output to local disk,
separated by partitioning. Once completed, tells
master node

Reduce worker told of location of map task outputs,
pulls their partition’s data from each mapper, execute

function across data

Note:
— “All-to-all” shuffle b/w mappers and reducers
— Written to disk (“materialized”) b/w each stage



Generality vs Specialization



General Systems

* Can be used for many different applications

e Jack of all trades, master of none

— Pay a generality penalty

* Once a specific application, or class of

applications becomes sufficiently important,

time to build specialized systems



MapReduce is a General System

e Can express large computations on large data;
enables fault tolerant, parallel computation

* Fault tolerance is an inefficient fit for many
applications

e Parallel programming model (map, reduce) within
synchronous rounds is an inefficient fit for many
applications



MapReduce for Google’s Index
* Flagship application in original MapReduce paper

* Q: Whatis inefficient about MapReduce for computing
web indexes?

— “MapReduce and other batch-processing systems cannot
process small updates individually as they rely on creating
large batches for efficiency.”

* |Index moved to Percolatorin ~2010 (osoi ‘10
— Incrementally process updates to index
— Uses OCC to apply updates
— 50% reduction in average age of documents



MapReduce for Iterative Computations

* Iterative computations: compute on the same data as we
update it
— e.g., PageRank
— e.g., Logistic regression

* Q: What is inefficient about MapReduce for these?
— Writing data to disk between all iterations is slow

* Many systems designed for iterative computations, most
notable is Apache Spark
— Key idea 1: Keep data in memory once loaded

— Key idea 2: Provide fault tolerance via lineage:

» Save data to disks occasionally, remember computation that created
later version of data. Use lineage to recompute data that is lost due to
failure.



MapReduce for Stream Processing

e Stream processing: Continuously process an
infinite stream of incoming events
— e.g., estimating traffic conditions from GPS data
— e.g., identify trending hashtags on twitter
— e.g., detect fraudulent ad-clicks

* Q: What is inefficient about MapReduce for
these?



Stream Processing Systems

* Many stream processing systems as well, typical structure:
— Definite computation ahead of time

— Setup machines to run specific parts of computation and pass data around
(topology)
— Stream data into topology

— Repeat forever
— Trickiest part: fault tolerance!

* Notably systems and their fault tolerance
— Apache/Twitter Storm: Record acknowledgment
— Spark Streaming: Micro-batches

— Google Cloud dataflow: transactional updates
— Apache Flink: Distributed snapshot

e Specialization is much faster, e.g., click-fraud detection at Microsoft
— Batch-processing system: 6 hours
— w/ StreamScope[nspi ‘16]: 20 minute average



In-Memory Data-Parallel
Computation



Iterative Algorithms

* MR doesn’t efficiently express iterative algorithms:
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MapAbuse: Iterative MapReduce

Iterations

e System is not optimized for iteration:
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Spark: Resilient Distributed Datasets

* Let’s think of just having a big block of RAM,
partitioned across machines...

— And a series of operators that can be executed in
parallel across the different partitions

* That’s basically Spark

— A distributed memory abstraction that is both
fault-tolerant and efficient



Spark: Resilient Distributed Datasets

* Restricted form of distributed shared memory

— Immutable, partitioned collections of records

— Can only be built through coarse-grained
deterministic transformations (map, filter, join, ...)

— They are called Resilient Distributed Datasets (RDDs)

* Efficient fault recovery using lineage
— Log one operation to apply to many elements
— Recompute lost partitions on failure
— No cost if nothing fails



Spark Programming Interface

Llanguage-integrated APl in Scala (+ Python)
Usable interactively via Spark shell

Provides:
— Resilient distributed datasets (RDDs)

— Operations on RDDs: deterministic
transformations (build new RDDs), actions
(compute and output results)

— Control of each RDD’s partitioning (layout across
nodes) and persistence (storage in RAM, on disk,
etc)



Example: Log Mining

* Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)
errors = lines.filter( .startsWith(“ERROR™))
messages = errors.map( .split(“\t’)(2))

messages.persist()

messages.filter( .contains(“foo”)).count

messages.filter( .contains(“bar”)).count
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Efficient Fault Recovery via Lineage

Maintain a reliable log of applied operations
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Generality of RDDs

Despite their restrictions, RDDs can express many
parallel algorithms

— These naturally apply the same operation to many
items

Unify many programming models
— Data flow models: MapReduce, Dryad, SQL, ...

— Specialized models for iterative apps: BSP (Pregel),
iterative MapReduce (Haloop), bulk incremental, ...

Support new apps that these models don’t
Enables apps to efficiently intermix these models



Spark Operations

map flatMap
filter union
Transformations sample join
(define a new RDD) groupByKey cogroup
reduceByKey Cross
sortByKey mapValues
collect
Actions reduce
(return a result to count
driver program) >ave
lookupKey

take




Task Scheduler

Wide dependencies

DAG of stages to
execute

Pipelines functions
within a stage

Locality & data
reuse aware

Partitioning-aware
to avoid shuffles

W = cached data partition

Narrow dependencies
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Spark Summary

Global aggregate computations that produce
program state

— compute the count() of an RDD, compute the max diff,
etc.

Loops!

— Spark makes it much easier to do multi-stage
MapReduce

Built-in abstractions for some other common
operations like joins

See also Apache Flink for a flexible big data
platform



