MapReduce case study

alllauc Ellall aealy

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 1.1

Marco Canini

Why scalable analytics?

« (Google’s index was perhaps one |
of the first “big data” problems N

— Crawler fetched 100s of millions /% N\ eeeeeee

of web pages L2040 AW

— Needed to create giant indices Mu Mu e 1}

from keywords

— Too much work for any individual machine
— needed to be spread across many machines

« Soon they also needed to compute various statistics on
this data

— For instance, how many documents contained a given
keyword?

* This led to the development of the MapReduce framework

Key challenges

Data is spread across (many) computers

— What do we do if related data is on different computers,
but we need all of it to perform some computation?

Communication is expensive

— Need to be smart about where data is stored, and
when it is moved

Coordination is key

— The computation needs to be carefully orchestrated to
get the correct result

— ... especially if there are failures, heterogeneous
machines, efc.

Case Study: MapReduce

(Data-parallel programming at scale)

What is MapReduce?

. Magl'\’leduce Is a famous distributed programming
modade
— Invented at Google; paper published in 2004

— At that time, it was used for the production indexing
system

* Closed source, but open-source reimplementations
exist
— Example: Apache Hadoop

 Originally ran on GFS (The Google FileSystem)

— GFS is designed for sequential reads and appends
— This is the workload that MapReduce would produce!

Application: Word Count

SELECT count(word) FROM data
GROUP BY word

cat data.txt

tr -s '[[:punct:][:space:]]' \n'

sort | uniq-c

Using partial aggregation

1. Compute word counts from individual files
2. Then merge intermediate output

3. Compute word count on merged outputs

Using partial aggregation: data flow

1. In parallel, send to worker:
— Compute word counts from individual files

— Collect result, wait until all finished
2. Then merge intermediate output

3. Compute word count on merged intermediates

| don’t want to deal with all this!

« Wouldn't it be nice if there were some system that

took care of all these details for you?
— But every task is different!

— Oris it? The detailed are different (what to compute, etc.),
but the Is often same!

— Maybe we can have a ‘generic’ solution?

* |deally, just tell the system what needs to be done

This is what frameworks like MapReduce (and Apache Spark
and Apache Flink) do!

MapReduce: Programming Interface

map (key, wvalue) -> list(<k’, v’'>)

— Apply function to (key, value) pair and produces
set of intermediate pairs

reduce (key, list<value>) -> <k’', v’'>

— Applies aggregation function to values collected
by key

— Outputs result

MapReduce example: Word Count

map (String key, String value):
// key: document name; value: document line
for each word w 1n value:

EmitIntermediate (w, "1");

reduce (String key, Iterator values):
// key: a word; value: a list of counts
int result = 0;
for each v 1n values:
result += ParselInt(v);

Emit (key, AsString(result));
11

MapReduce: Optimizations

combine (list<key, value>) -> list<k,v>
— Perform partial aggregation on mapper node:
<the, 1>, <the, 1>, <the, 1> - <the, 3>

— combine() should be commutative and associative

partition(key, 1nt) -> int
— Need to aggregate intermediate vals with same key
— Given n partitions, map key to partition 0 <i<n
— Typically via hash(key) mod n

Putting it together...

How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

(how, 1), (much, 1),
(wood, 1), (would, 1),
(a, 1), (woodchuck, 1),

(chuck, 1), (if, 1), (a, 1),
(woodchuck, 1), (could, 1),
(chuck, 1), (wood, 1)

map

(a, 1), (woodchuck, 1),
(would, 1), (chuck, 1),
(a, 1), (lot, 1), (of, 1),

(wood, 1), (if, 1), (a, 1),
(woodchuck, 1), (could,
1), (chuck, 1), (wood, 1)

how

much

wood

would
a
woodchuck
chuck
if

could

combine

a
woodchuck
would
chuck
lot

partition

a

woodchuck

reduce

13

Synchronization Barrier

How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

how
(how, 1), (much, 1), L)
(wood, 1), (would, 1), wood
(a, 1), (woodchuck, 1),

would

a

(chuck, 1), (if, 1), (a, 1),
(woodchuck, 1), (could, 1),
(chuck, 1), (wood, 1)

woodchuck
chuck
if

could

(a, 1), (woodchuck, 1),
(would, 1), (chuck, 1),
(a, 1), (lot, 1), (of, 1),

(wood, 1), (if, 1), (a, 1),
(woodchuck, 1), (could,
1), (chuck, 1), (wood, 1)

- NN N =N - -

a

woodchuck

14

Fault Tolerance in MapReduce

« Map worker writes intermediate output to

local disk, separated by partitioning. Once
I I completed, tells master node.

* Reduce worker told of location of map task
outputs, pulls their partition’s data from each
mapper, execute function across data

I Note:

— “All-to-all” shuffle b/w mappers and reducers

— Written to disk (“materialized”) b/w each stage

Fault Tolerance in MapReduce

« Master node monitors state of system
— If master failures, job aborts and client notified

« Map worker failure
— Both in-progress/completed tasks marked as idle

— Reduce workers notified when map task is re-executed
on another map worker

« Reducer worker failure
— In-progress tasks are reset to idle (and re-executed)
— Completed tasks had been written to global file system

Straggler Mitigation in MapReduce

)
§ | Map.Read ——
0 o B | Map.Move
X< Map - ~~=-
wn >
© = VA " Reduce
- ©
o E
£ >
c O
=
28
S 1yl R R |
Z
s 0.1 0.2 0.3 0.4 0.5

Time (Normalized by Job Lifetime)

 Tail latency means some workers finish late

* For slow map tasks, execute in parallel on second map

worker as “backup”, race to complete task
17

MapReduce: Limitations

MapReduce worked very well for Google’s initial use

cases, and lots of others besides

— No data dependencies within map/reduce phases — Good
scalability

But it does have some important limitations:

— Complex operations have to be rewritten into ‘'map’ and
‘reduce’ operations (possibly with several rounds of
mapping and reducing)

— Dataflows always read from and write to disk (why?) —
limited speed

You’ll build (simplified) MapReduce!

* Assignment 1: Sequential MapReduce
— Learn to program in Go!
— Due September 13

* Assignment 2: Distributed MapReduce
— Learn Go’s concurrency, network 1/0O, and RPCs
— Due September 20

