
Time and Logical Clocks 2

CS 240: Computing Systems and Concurrency
Lecture 4

Marco Canini

• Happens-Before relationship
– Event a happens before event b (a à b)
– c, d not related by à so concurrent, written as c || d

• Lamport clocks is a logical clock construction to capture the
order of events in a distributed systems
(disregarding the precise clock time)
– Tag every event a by C(a)
– If a à b, then ?
– If C(a) < C(b), then ?
– If a || b, then ?

2

Lamport Clocks Review

• Happens-Before relationship
– Event a happens before event b (a à b)
– c, d not related by à so concurrent, written as c || d

• Lamport clocks is a logical clock construction to capture the
order of events in a distributed systems
(disregarding the precise clock time)
– Tag every event a by C(a)
– If a à b, then C(a) < C(b)
– If C(a) < C(b), then NOT b à a (a à b or a || b)
– If a || b, then nothing

3

Lamport Clocks Review

• Lamport clock timestamps don’t capture causality

• Given two timestamps C(a) and C(z), want to know
whether there’s a chain of events linking them:

a à b à ... à y à z

4

Lamport Clocks and causality

• Can totally-order events in a distributed system: that’s useful!
– We saw an application of Lamport clocks for totally-

ordered multicast

• But: while by construction, a à b implies C(a) < C(b),
– The converse is not necessarily true:

• C(a) < C(b) does not imply a à b (possibly, a || b)

5

Take-away points: Lamport clocks

Can’t use Lamport clock timestamps to infer
causal relationships between events

Today
1. Logical Time: Vector clocks

6

• One integer can’t order events in more than one process

• So, a Vector Clock (VC) is a vector of integers, one entry
for each process in the entire distributed system

– Label event e with VC(e) = [c1, c2 …, cn]

• Each entry ck is a count of events in process k
that causally precede e

7

Vector clock: Introduction

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment local entry ci

2. If process j receives message with vector [d1, d2, …, dn]:
– Set each local entry ck = max{ck, dk}, for k = 1…n
– Increment local entry cj

8

Vector clock: Update rules

• All processes’ VCs start at
[0, 0, 0]

• Applying local update rule

• Applying message rule
– Local vector clock piggybacks

on inter-process messages

9

Vector clock: Example

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[2,0,0]

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

[2,2,0]

• Rule for comparing vector timestamps:
– V(a) = V(b) when ak = bk for all k
– V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency:
–a || b if ai < bi and aj > bj, some i, j

10

Comparing vector timestamps

P3

• V(w) < V(z) then there is a chain of events linked by
Happens-Before (à) between w and z

• If V(a) || V(w) then there is no such chain of events
between a and w

11

Vector clocks capture causality

x

y

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

w

z

P1 P2

[0,1,0]a

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: NOT z à a (either a à z or a || z)

Vector clocks: V(a) < V(z)
Conclusion: a à z

12

Vector clock timestamps precisely
capture Happens-Before relationship

(potential causality)

• Compared to Lamport timestamps,
vector timestamps O(n) overhead for storage and
communication, n = no. of processes

13

Disadvantage of vector timestamps

• Vector Clocks
– Precisely capture happens-before relationship

Take-away points

14

• Suppose these processes maintain vector clocks. Write the
vector clock of each event starting from clock time 0.

15

VC Quiz

Safety and liveness properties

16

• This is hard!
– How do we design fault-tolerant systems?
– How do we know if we’re successful?

• Often use “properties” that hold true for every
possible execution

• We focus on safety and liveness properties

17

Reasoning about fault tolerance

• Property: a predicate that is evaluated over a
run of the system
– “every message that is received was previously

sent”

• Not everything you may want to say about a
system is a property:
– “the program sends an average of 50

messages in a run”

18

Properties

• “Bad things” don’t happen, ever
– No more than k processes are simultaneously in

the critical section
– Messages that are delivered are delivered in

causal order

• A safety property is “prefix closed”:
– if it holds in a run, it holds in every prefix

19

Safety properties

• “Good things” eventually happen
– A process that wishes to enter the critical section

eventually does so
– Some message is eventually delivered
– Eventual consistency: if a value doesn’t change,

two servers will eventually agree on its value

• Every run can be extended to satisfy a liveness
property
– If it does not hold in a prefix of a run, it does not

mean it may not hold eventually

20

Liveness properties

• “Good” and “bad” are application-specific
• Safety is very important in banking transactions

– May take some time to confirm a transaction

• Liveness is very important in social networking
sites
– See updates right away

21

Often a trade-off

