
Lab2 - Concurrency and RPCs in Go

0. Go Concurrency

As mentioned in last lab, you should already learned through the A Tour of Go - Concurrency.

If not, do it now.

1. RPC Hello World

Create a Go Module Project HelloWorldRPC .

Create server.go

By choosing Simple application, the created file is under the main package with a main function.

https://go.dev/tour/concurrency/1

Copy code to server.go , please read comments and understand the code.

package main

import (

 "log"

 "net"

 "net/rpc" // Go's RPC package

)

/*

Go does not support 'class'.

Define an empty struct as RPC service

*/

type HelloService struct{}

/*

Function will be called by RPC.

(p *HelloService) specifies the receiver, so Hello is a HelloService's 'method'.

To be an RPC function, there are three rules :

1. Only have two serializable parameters, and the second is pointer

2. With one return value - error

3. Public method

*/

func (p *HelloService) Hello(request string, reply *string) error {

 *reply = "hello:" + request

 return nil

}

func main() {

 rpc.RegisterName("HelloService", new(HelloService)) // Register all methods of

HelloService who fit three rules as an RPC function

 Listener, err := net.Listen("tcp", ":1234") // Listen to a TCP port, and
return a listener

 if err != nil {

 log.Fatal("ListenTCP error:", err)

 }

Create client.go .

Copy code to client.go , please read comments and understand the code.

Run server.go

Run client.go and you should get the output

 conn, err := Listener.Accept() //The listener will block the code until a TCP

connection built from the port.

 if err != nil {

 log.Fatal("Accept error:", err)

 }

 rpc.ServeConn(conn) // Provide RPC service on our TCP connection

}

package main

import (

 "fmt"

 "log"

 "net/rpc"

)

func main() {

 client, err := rpc.Dial("tcp", "localhost:1234") // Dial to RPC destination

 if err != nil {

 log.Fatal("dialing:", err)

 }

 var reply string

 err = client.Call("HelloService.Hello", "hello", &reply) // Call RPC function

 if err != nil {

 log.Fatal(err)

 }

 fmt.Println(reply)

}

hello:hello

Battleship

In this section, we will inplement a Battleship game by RPC.

The source code is on course syllabus.

Create project from unziped folder

The files are by default in package main, they depend on others, we cannot simply run by clicking
"Run".

For simplicity, we will use CLI to run code, but it is also encouraged to modify the package structure
after class to deal with dependencies.

Launch the server

I will launch the server so you actually don't need to do this.

Launch client

go run server.go common.go shipmaps.go

Now the code is incomplete, your task is to implement below logics in client.go (not necessary to
touch other files).

Taks 1: Establish connection to the server

See https://golang.org/pkg/net/rpc/ example “rpc.DialHTTP”
Must return a rpc.Client object

Task 2: Make the JoinGame request

You want to call the remote BattleshipsService.JoinGame function
Parameters PublicPlayer and JoinGameRequest are defined in common.go
See https://golang.org/pkg/net/rpc/ example “client.Call”

Task 3: Implement the attack server

Tasks 1 and 2 were making requests as a client, now must accept requests

See https://golang.org/pkg/net/rpc/

Examples “rpc.Register” and “rpc.HandleHTTP”

Create a listener to serve requests on a separate goroutine

Task 4: Implement the turn logic

Hint: The turn logic can be achieved with Channels, Locks or WaitGroups
Hint 2: When the other player attacks, you get a “token” to make one attack

go run client.go common.go board.go <game name> <player_name> <server_address>

<server_port> <client_port>

go run client.go common.go board.go JihaoGame Jihao1 localhost 6001 7001

https://golang.org/pkg/net/rpc/
https://golang.org/pkg/net/rpc/
https://golang.org/pkg/net/rpc/

	Lab2 - Concurrency and RPCs in Go
	0. Go Concurrency
	1. RPC Hello World
	Battleship

