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Abstract
To understand, debug, and predict the performance of com-
plex software systems, we develop the concept of probabilis-
tic performance annotations. In essence, we annotate compo-
nents (e.g., methods) with a relation between a measurable
performance metric, such as running time, and one or more
features of the input or the state of that component. We use
two forms of regression analysis: regression trees and mix-
ture models. Such relations can capture non-trivial behaviors
beyond the more classic algorithmic complexity of a compo-
nent. We present a method to derive such annotations auto-
matically by generalizing observed measurements. We illus-
trate the use of our approach on three complex systems—the
ownCloud distributed storage service; the MySQL database
system; and the x264 video encoder library and application—
producing non-trivial characterizations of the performance.
Notably, we isolate a performance regression and identify
the root cause of a second performance bug in MySQL.

Keywords: performance, performance analysis, instrumen-
tation, dynamic analysis
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1 Introduction
To manage complexity in programs, developers use a combi-
nation of tools [5, 6, 11, 12] and best practices (e.g., modular-
ization and stylized documentation). These tools and prac-
tices help with functionality but not with run-time dynamical
aspects, such as performance. Indeed, even for implemen-
tations of classic algorithms, such as sort algorithms, the
dynamics are more complex than computational complexity
alone. Interactions with the memory subsystem, for example,
can dramatically affect the performance of these algorithms
and introduce modalities. Therefore, developers cannot read-
ily understand the consequences of their code changes. For
example, invoking an innocuous-sounding method, getX,
may result in RPC calls, acquiring locks, allocating memory,
or performing I/O. The outcome of not fully understanding
the performance of a method may be catastrophic; indeed we
have personally experienced situations where an unintended
change in performance significantly degraded user experi-
ence with the service (e.g., by resulting in more timeouts
for the user). Thus, we need a system for determining and
checking the performance characteristics of code.
This paper takes the first step towards such a system: it

describes a formal notation for describing the performance
characteristics of code and presents and evaluates an auto-
mated system for inferring the performance annotations that
capture these characteristics.
To illustrate the challenges in understanding the perfor-

mance of even a simple method, Figure 1 shows the running
time of list<int>::sort() from the C++ standard library
for a range of input sizes. To show the interactions with
the memory subsystem we limit the amount of memory us-
ing Linux Control Groups (using much larger inputs would
have the same effect). Despite the documented O(n logn)
computational complexity of the function, Figure 1 shows
that running time has three distinct modes: n logn for small
inputs (although it appears nearly constant), linear increase
with a steep slope for medium inputs, and a dramatic jump
but lower slope for large inputs. How would a programmer
wanting to use this code know about these modalities? The
programmer could carefully study the code before using it.
But apart from the fact that this would be very onerous and
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Figure 1. Running time for std::list::sort

would lose much of the benefit of modularity, even this is
not enough: the big jump in the running time is not obvious
or even visible from the code, and instead is a consequence
of the interaction of the code with the underlying kernel and
memory subsystem.
Today, developers rely on profiling [8, 14] to understand

the performance of their code. Since profilers report aggre-
gate resource usage (e.g., CPU cycles spent in a function),
they do not relate the performance of a function to its input
and offer no predictive capabilities. Recent work in algorith-
mic profilers [25] attempts to generalize profiles by relating
the size of the input to amount of work performed by a
function (e.g., number of loop iterations). Thus, algorithmic
profilers attempt to discover the algorithmic complexity of
code. Our work complements algorithmic profilers in that,
rather than using an abstract notion of complexity, it consid-
ers real performance metrics and also the interaction of the
code with the underlying hardware and software.
At a high level, our approach works as follows. We col-

lect performance data (e.g., CPU time, memory usage, lock
holding/waiting time, etc.) along with features of the ar-
guments to functions. We then use statistical analysis to
build mathematical models relating input features to perfor-
mance. Our models take modalities into consideration: in the
std::list::sort example we produce three models, one
for each modality. We translate these models into a semanti-
cally meaningful annotation language, which programmers
can read and understand. This process is fully automated.

We have implemented our approach in a tool, named Freud.
We evaluate Freud on three systems in real use: the MySQL
database system; ownCloud, a distributed file hosting service
offered by a Swiss academic ISP; and the x264 video encoder.
Notably, Freud is able to isolate a performance regression in
MySQL, and identify the root cause of a second performance
bug that was supposedly fixed in prior releases, but in reality
still exists.
Overall, Freud produces annotations and graphs that are

easy to read and interpret for the performance analyst. The
annotations relate a diverse set of metrics to input features,
greatly increasing a developer’s understanding of perfor-
mance. These annotations can be used for documentation or

run-time assertion checking.Moreover, the results generalize—
even though the three case studies are very different in their
functionalities, programming languages used, and deploy-
ment, we used the same analysis techniques on all of them.

In summary, this paper makes the following contributions:
• We develop a performance model in the form of proba-
bilistic performance annotations (§2);
• We describe a methodology to derive performance anno-
tations through dynamic analysis. In particular, our tech-
niques can automatically identify relevant features of the
input, and relate those features through a synthetic statis-
tical model to a performance metric of interest (§3);
• We describe a concrete implementation of the methodol-
ogy in a tool named Freud, which automatically produces
performance annotations for instrumented binaries (§4);
• We evaluate Freud through controlled experiments (§5),
and analyze three complex systems:MySQL, the ownCloud
storage service, and the x264 video encoder (§6).

2 Performance Annotations
Wefirst describe how developers use our tool, Freud, to derive
performance annotations for their programs (§2.1) and then
present our full annotation language (§2.2).

2.1 Freud Analyzer
This section describes how Freud works for C++; our PHP
implementation is similar, but uses a different tool set.

We assume the user has domain knowledge of the software
being analyzed, and has selected the method they want to
study.

Freud assumes that the code can be instrumented to mea-
sure the performance metric of interest such as running time,
memory consumption, lock holding time, number of RPCs,
etc. Many systems already have such instrumentation; e.g.,
Google’s RPC libraries and locking libraries for C++ and
Java measure metrics on RPC calls and lock holding behav-
ior. If the instrumentation is not there, we can use binary or
bytecode instrumentation tools to add it.

Freud uses debugging information for its code analysis of
the binary and then uses Pin [18] to add instrumentation to
collect features and metrics (§3.1,§4.1). For features, Freud
collects the values of the arguments alongwith some relevant
properties based on their type information.
The user then runs the program with multiple inputs,

which may be standard workloads or special inputs picked
to exercise the method that the user is interested in. The
result of these runs are log files: each log entry gives the
values for the metrics of interest along with all the features.

Freud then statistically analyzes the logs to produce anno-
tations (§3). Freud can also produce graphical representations
of the annotations. In fact, all the performance graphs shown
in this paper are generated by Freud.
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2.2 Annotation Language
Figure 1 shows that even our simple sort example has three
modalities. Freud’s output annotations for this method (Fig-
ure 2) reflect this.

1 std::list<int>::sort.time(this) {
2 uint s = *(this->_M_impl._M_node._M_storage._M_storage);
3
4 [s > 49584 && s < 1450341]
5 Norm(53350.31 - 2.10*s + 0.12*s*log(s), 12463.88);
6
7 [s > 1589482 && s < 2085480]
8 Norm(-90901042.29 + 63.11*s, 899547.29);
9
10 [s > 2098759 && s < 3415880]
11 Norm(56712024.50 + 35.38*s, 3379580.27); }

Figure 2. The Performance Annotation for Sort

Concretely, a performance annotation is an expression
that characterizes a performance metric as a random vari-
able (the dependent variable) whose distribution is a function
of zero or more features of the input or state of the method
(the independent variables). Thus, the basic form of a perfor-
mance annotation is as follows: Y ∼ expr(x), which is read
as: Y is a random variable distributed like expr(x), where x
is the relevant feature. Expressions with zero input features
describe behaviors that are independent of the input or for
which Freud found no relevant features.

Figure 2 gives the expression for the running time (depen-
dent variable) of sort. Line 2 identifies the feature (named
s) that Freud found relevant to the running time of this
method. This feature corresponds to the variable that gives
the length of the input list. Admittedly, this is not intuitively
clear from the name of the variable that defines the feature
(_M_storage). However, that is the exact name found in the
implementation in the C++ standard library, which presum-
ably would be meaningful to a developer of the library.

Freud’s inferred annotations use scope conditions to sepa-
ratemodalities:Y ∼ [C1] expr1(x); [C2] expr2(x). Thismeans
that the run time follows the distribution expr1(x) if condi-
tion C1 holds, and expr2(x) if condition C2 holds, and so on.
In other words, the annotation describes a type of regression
tree where the scope conditions indicate partitions.
Figure 2 shows that Freud’s annotation for the running

time of sort has three scopes: (i) when the size is between
49584 and 1450341, (ii) when the size is between 1589482
and 2085480, and (iii) when the size is between 2098759 and
3415880. The interpretation of these constants requires fur-
ther analysis. For example, as it turns out, the first threshold
represents the number of elements of list<int> that ex-
haust the memory allocated to the program (each element
uses 24 bytes, and the resident set size limit was 36MB, which
means 1.5M elements).
In all three cases, Freud infers a normal distribution. In

the first case, ignoring the constants, we see that the mean

value is n logn where n is the length of the list being sorted,
which conforms to the expected O(n logn) complexity. In
the second and third cases, the performance is linear with
the length of the input list but with different constant values.
Notice that the asymptotic complexity is stillO(n logn) how-
ever, Freud could not distinguish that trend from the linear
component in the given limited input range.

If Freud is unable to determine a relationship between fea-
tures and scopes, it produces probabilistic annotations (i.e., a
type of mixture model). For example, if Freud observes a per-
formance behavior of expr1(x) 20% of the time and a perfor-
mance behavior of expr2(x) 80% of the time then the annota-
tionwould take the form:Y ∼ {0.2} expr1(x); {0.8} expr2(x).

Freud can also infer models that combine probabilistic an-
notations within some given scoping conditions, as follows:
Y ∼ [C1] expr1(x); [C2]{ {0.2} expr2(x); {0.8} expr3(x) }.

Freud supports and infers three distributions: normal, bi-
nomial, and exponential. Furthermore its expressions may
use all the standard relational and arithmetic operators and
support standard mathematical functions (log, exp, etc.). For
brevity, we omit the formal grammar of the annotation lan-
guage, and rely on examples throughout this paper.

3 Derivation of Performance Annotations
We now describe a method to collect measurements and
derive performance annotations. This method consists of
two phases: instrumentation and then model selection.

3.1 Instrumentation
The first step involves analyzing and instrumenting the code
to collect relevant data. For every execution of every target
method, we collect (1) all the desired performance metrics,
and (2) all the data that can be used to extract potentially
relevant features of the input or the state of the system.
Optionally, we log (3) the outcome of every executed condi-
tional branch instructions (branch taken or not taken). These
branch logs can improve the quality of the performance an-
notations (§3.2).

Metrics. Metrics are the dependent variables in perfor-
mance annotations. In contrast to traditional profilers, Freud
collects metrics besides running time, such as memory con-
sumption and lock holding/blocking time. Moreover, the
collection process is extensible, allowing us to easily add
new metrics. When using Freud, the performance analyst
explicitly selects which metrics are of interest to them. This
is passed as a command line argument to the tool.

The exact procedures to collect performance metrics vary
between metrics and programming languages. For example,
to measure the running time for the executions of a method,
we can wrap the method with code that logs timestamps
at the entry and exit points of the method. To measure the
amount of heap memory consumed, instead, we can either
wrap a method with code that measures the total memory
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allocated at a given instant, as we do with PHP, or we can
track all the calls to the main memory allocation functions,
as we do with C/C++ (§4.1).

Features. Features are the independent variable in perfor-
mance annotations. Unlike with metrics, which are selected
by the user, Freud selects features for each target method
automatically. This process is therefore a bit more involved,
as it amounts to statically finding the values of local or global
variables that may impact the execution of the method. Freud
selects three types of features: program variables, system
variables, and quantities computed from program variables.

The first and most directly relevant variables we use are
the parameters to the method. We collect the values of scalar
variables and we also transitively traverse pointers to extract
field values of heap objects. We limit the depth of this explo-
ration that might otherwise become arbitrarily complex. This
analysis is language dependent, and in particular it is based
on information about the types of the objects processed by
the target methods. For example, in the case of C/C++, Freud
uses debugging information to determine data types and to
explore complex data structures (§4.1).

In addition to the variables in the program, we also collect
information that is present in the system but not necessarily
in the instrumented program, such as the clock frequency of
the processor, the number of active processes on the machine,
and other system performance indicators.
We then heuristically discover derived features that are

likely to affect performance. These are values computed
from one or more values of state variables or parameters. For
example, if we find that an object contains a pair of variables
named begin and end, first and last, or start and finish, we log
a new, derived feature computed as the difference between
the two variables. The rationale, confirmed by experience, is
that this feature might represent a size, and might therefore
correlate well with performance.

InstrumentationOverhead andPerturbation. For any
performance monitoring tool, instrumentation overhead and
perturbation can be a concern, and Freud is no exception.
Prior work has shown that even innocuous changes to code
layout, similar to that caused by code instrumentation, can
have considerable effects on execution times [16]. In §4.2
we describe our efforts to mitigate the instrumentation over-
head, and in §5 we experimentally validate the accuracy and
robustness of our measurements.

Instrumentation Logs. In summary, the instrumenta-
tion produces a log of records. Each record represents a
single execution of a single component in the following for-
mat:

id,y1, . . . ,ym, x1, . . . , xn,b1,1,b1,2, . . . , #,b2,1,b2,2, . . . , #, . . .

where id is the name of the component, followed by the
performance metrics yi , by the raw and derived features xi ,

and the binary outcomes of the execution of the first branch
instruction, b1,1,b1,2, . . ., followed by the outcomes of the
second branch instruction, b2,1,b2,2, . . ., and so on.

3.2 Model Selection
The second phase of our approach consists of an offline sta-
tistical analysis. Freud processes the logs to produce proba-
bilistic performance annotations for the chosen components.
Freud applies the same statistical analysis to every target
component for every target performance metric.
The analysis is based on two statistical models, namely

regression trees and mixture models. A regression tree de-
fines a hierarchical partitioning of the performance records
such that the records in each partition are defined by a scope
condition and are modeled by a regression. A mixture model
is a combination of two or more sub-models each associated
with an occurrence probability rather than a scope condition.
These two classes of models correspond to the scoped and
probability specifications in our annotation language (§2.2).
At a high-level, the analysis proceeds in two phases. In

the first phase, we attempt to formulate a regression tree,
partitioning the records based on specific conditions on fea-
tures (x1, x2, . . .) and fitting a regression model within each
partition. If part of the records can not be modeled with a
simple and accurate enough regression, and if no condition
can be found to further split that part, then we proceed with
the clustering of the records of that part based on the metric
values (y, as opposed to x1, x2, . . .).

After clustering, whether it is for a specific partition or
for the entire data set, we still try to identify, for each cluster,
a feature-dependent model as well as a defining condition
based on the values of the features. If that also fails, we resort
to a simpler probabilistic characterization of each cluster, and
we try to model the data of each cluster first with a regression
and then with an input-independent model.

We now detail this high-level model selection process. We
start with the model formulation that we invoke in every
step of both high-level phases.

Model Formulation. Given a set of measurements of a
metric y and corresponding features x1, x2, . . ., we formu-
late multiple-regression models h(x1, x2, . . .) with multiple
independent variables. We try four classes of models of in-
creasing order: first constant, then x (linear), then x logx ,
then x2 (quadratic). For each class, we select one model. To
choose the model for a class, we iteratively compute multiple
regressions, progressively filtering the features that are less
relevant for the regression. The process stops when all the
features of the regression obtain a good (low) p-score, or
there are no features remaining in the regression. For each
chosen model for each class, we compute the R2 goodness-of-
fit indicator. Since we want to avoid overfitting and choosing
models with too many parameters, we use the Bayesian In-
formation Criterion (BIC) to compare the relative quality of
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the candidate models. We compute the BIC value for every
model whose R2 is above a fixed threshold, and choose the
model with the lowest BIC value.

To reduce the complexity of the regression analysis with
numerous features, we first eliminate the features whose
value is zero everywhere. Then, we group strongly corre-
lated features into equivalence classes and use a single rep-
resentative from each class in the regression analysis.

Regression Tree. We try to formulate a regression tree
using Algorithm 1. We start by considering the whole set of
logged records. If we find a good-enough regression model
h(x1, x2, . . .) for a set of features {x1, x2, . . .}, then that is the
resulting model. Otherwise, we try to partition the set of
measurements so as to find good regressions for the individ-
ual parts. Thus we proceed recursively with a hierarchical
partitioning until we cover the entire set of records with
either valid regressions or clustering information. We use
input-dependent conditions to define the partitions.

Algorithm 1 Regression Tree Analysis
Input: R = {r1, r2, . . .}.
Output: Output: A = {(C1,h1), . . . }.
1: A← ∅
2: P ← {(true,R)}
3: while P is not empty do
4: (C, S) ← P .pop()
5: formulate model h(X ) on S for some feature-set X
6: if h(X ) is a good model then
7: A← A ∪ {(C,h(X ))}
8: else if S can be split into S1 and S2 on some cond. C ′

then
9: P ← P ∪ {(C ∧C ′, S1), (C ∧ ¬C

′, S2)}
10: else
11: //formulate a mixture model h on S with clustering

h ← output of Algorithm 2 on R = S
12: A← A ∪ {(C,h)}
13: end if
14: end while

The input to Algorithm 1 is a set of log records where
each record ri represents a run of the target method and
consists of a performance metric yi , a set of features xi ,f ,
and a set of branch results bi , j ,k for each branch j and each
execution of k of branch j. The output is an annotation A =
[C1]h1; [C2]h2; . . . consisting of a set of expressions hi , each
associated with a condition Ci .
Algorithm 1 iteratively processes various sets of input

records until it covers the whole input set R. The first itera-
tion starts by considering the whole set S = R. The algorithm
looks for a good model h(X ) that predicts S (line 5). A model
is considered good if the R2 goodness-of-fit, which measures
how well the model represents the data, is above a chosen
threshold. If no good model is found (line 8) the algorithm

looks for a condition C ′ that partitions S into two sets of
measurements S1 and S2—such that C ′ is always true in S1
and always false in S2—and then proceeds recursively to look
for good models for S1 and S2. If this hierarchical partitioning
fails to yield a set of models for the whole input set—because
a set S can not be modeled well by any regression h(X ) and it
can not be further partitioned based on a known condition—
then the algorithm fails to return a valid regression tree, and
the analysis proceeds with clustering.

Clustering and Mixture Model. The clustering analysis
(Algorithm 2) tries to partition the input set R = {. . . ri . . .}
based on the values yi of the performance metric rather
than based on any condition on the input features. The
output is an annotation A = [C1]h1; [C2]h2; . . . or A =
{p1}h1; {p2}h2; . . . consisting of a set of expressionshj , each
associated with a condition Cj or a probability pj .
For each cluster, Algorithm 2 first tries to find a good

model and also a defining scope condition for the data points
in the cluster, which then becomes part of the output an-
notation (lines 3–10). In this phase, unlike in Algorithm 1,
we allow for some data points not to be covered by specific
scoping conditions and distributions. If this first phase does
not yield a condition and a good model for even a single
cluster, the algorithm continues with a search that includes
input-independent models and that associates models with
probabilities (lines 12–21).

Scope Conditions. Given a set S of measurements with
features x1, x2, . . ., Algorithm 1 looks for conditions C that
partition S into two parts S1 and S2, such thatC is true for all
measurements in S1 and false for all those in S2. Algorithm 2
looks for conditions C that define S , such that C is true for
all the measurements in S and no other measurements.

The general idea is to find relatively simple and mutually
exclusive conditions, C1,C2, . . . that define different behav-
iors. This can be done by associating classes of execution
paths to behaviors, which in turn can be done statically, for
example through symbolic execution, or dynamically, as we
do with the instrumentation of branch instructions. For each
measurement and therefore for each execution of the target
method logged in S , the sequence of outcomes of branch
instructions defines the exact path of that execution, which,
together with the code of the branch instructions, defines a
condition on the input features. It is among those conditions
associated with each measurement that we look for scoping
conditions. Note that these conditions are exact, in the sense
that they are based on the code. Freud attempts to first use
these conditions in Algorithm 1. If that fails, Algorithm 2
resorts to a black-box approach and formulates conditions
by looking directly at the values of the features, as in the
three ranges found for the sort example of Figure 1.

Further Refinements. Annotations derived from cluster-
ing, which we fall back to when we do not have enough
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Algorithm 2 Clustering and Mixture Model
Input: R = {r1, r2, . . .}.
Output: A = {(p1,h1), . . . } or A = {(C1,h1), . . . }.
1: A← ∅
2: cluster R into R1,R2, . . . based on the metric values y
3: for all clusters Ri do
4: formulate model hi (X ) on Ri for some feature set X
5: if hi (X ) is a good model then
6: if there exists a condition Ci that defines Ri then
7: A← A ∪ {(Ci ,hi (X ))}
8: end if
9: end if
10: end for
11: if A = ∅ then
12: for all clusters Ri do
13: pi ← |Ri |/|R |
14: formulate modelhi (X ) on Ri for some feature-setX

15: if hi (X ) is a good model then
16: A← A ∪ {(pi ,hi (X ))}
17: else
18: formulate input-independent model hi on Ri
19: A← A ∪ {(pi ,hi )}
20: end if
21: end for
22: end if

information to find good correlations and scoping condi-
tions on input features, are valuable but limited. They are
valuable because they still characterize the most common
behaviors of the system. But they are also limited because
they do not relate the behavior with the input or the state
of the system, which means that the annotations can not be
used to extrapolate and therefore to make predictions for
different scenarios with different input or different state.

To overcome this limitation, we explore data-assimilation
heuristics to find meaningful regressions between metrics
and features. Specifically, we select input measurements and
find predictive models only on the selected data. We use two
heuristics: we remove additive and strictly positive noise,
and we select the dominant cluster.

We apply noise removal when the performance metric we
want to analyze is subject to only additive (positive) errors.
One such metric is time (duration). The goal is to filter out
additive noise from the measurements. Given a feature, we
keep only the measurements that exhibit the lowest value
for the performance metric, for a specific value of the feature
that, in case of success, returns the lower boundary for the
performance of the method, correlated to one feature.

Another heuristic that helps finding correlations when the
performance metric is subject to considerable noise is the
selection of the dominant cluster. Essentially, this is a special
case of mixture modeling when the probabilities associated

with all but a particular cluster of data points are very small.
For these cases, we treat the outliers as noise, and do not
use them in the regression. This is a simple form of robust-
ness analysis. The goal is to keep only the samples that are
most representative of the expected, average behavior of the
method. Given a feature, we group the records by feature
value. We then run a clustering algorithm within the groups
of measurements. Then, for each feature value, we select the
cluster with the most measurements as the representative
for that feature value and drop all other measurements.

4 Implementation
We describe the implementation of the ideas presented in
the previous section within our open-source tool Freud.1

4.1 Instrumentation
We implemented two working instrumentation tools, one
for PHP based on Runkit [19], and the other for C/C++ based
on DWARF debugging symbols [21] and the Pin [18] instru-
mentation tool. These tools are designed to work with any
program written in those programming languages, i.e., they
do not target a specific software system. For brevity we only
describe the C/C++ instrumentation.

We use debugging symbols to retrieve information about
the input parameters passed to a target C/C++ method. For
every method, we record the number of arguments, and
for each argument, we collect the type and the position in
memory that is valid just before the execution of the method.

We use the type information to log relevant features. We
collect the values of variables of the C primitive data types:
float, double, signed and unsigned char, short, int, long, and
long long as well as size_t and bool. For fixed length arrays,
we collect the size and optionally an aggregate value, like
the sum of all the elements of the array. For char pointers,
we try to find the string terminator to compute the string
length. We compute the difference between variables named
{start,begin,first} and {stop,end,last}, and log them as a de-
rived feature representing a size or time span. For pointers
and aggregate types (i.e., structs), we perform a traversal to
reach nested or linked variables. Pointer traversal requires a
runtime check to avoid de-referencing invalid pointers.
The output of the analysis is a table of features. We then

feed this table to the Pin tool that analyzes and instruments
the binary file at the function level to record features.
Similarly, we use Pin instrumentation to collect perfor-

mance metrics. For running time, we log the entry and exit
timestamps for every target method. We instrument memory
allocation primitives such as malloc or new to log dynamic
memory allocation. We instrument the pthread mutex func-
tions to collect lock holding/waiting time.

Finally, if we want to collect information about branches,
we instrument the binary at the instruction level using Pin’s

1https://github.com/usi-systems/freud
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JIT mode. We instrument every conditional branch instruc-
tion to record the address of the branch, which we use as a
unique id, and the branch outcome.

4.2 Overhead and Perturbation
Instrumentation necessarily introduces overhead. However,
this is widely regarded as an acceptable cost, as the benefits
of collecting the data outweigh the performance degradation.
In order to minimize the run-time overhead of the instru-
mentation, we use sampling. We use a reservoir sampling
algorithm to collect a fixed number of observations for every
method or function for every run.

The instrumentation overhead depends on Freud’s intrin-
sic features, such as the number and sizes of features recorded
by Freud. It also depends on external factors, such as Pin’s
JIT compilation, which is variable and also difficult to ana-
lyze in part because Pin is proprietary software. Notice also
that it is always possible to construct adversarial cases in
which the overhead would dominate the execution time, for
example by applying Freud to very simple functions exe-
cuted in extremely hot loops. Still, in practice the overhead
remains very limited, as we have verified experimentally in
all the micro-benchmarks and concrete cases evaluated in
Sections 5 and 6.

For Freud, the more pressing issue is that the instrumenta-
tion might perturb the measurements themselves. To reduce
that risk, we subtract from the observations the execution
time of the instrumentation code itself, and we invalidate
measurements affected by Pin’s JIT compilation. We set up a
callback function, triggered when a new code trace is added
to Pin’s code cache, that invalidates the measurements that
are in progress for all methods on the call stack.

4.3 Analysis
The regression analysis and all the other operations de-
scribed in the remainder of the section are implemented
as an off-line C++ program. The program uses the R statisti-
cal package library to compute regressions, mainly using the
lm function (fitting linear models), and other basic functions
to compute statistical properties of data sets.

Algorithm 2 clusters one-dimensional data (a single perfor-
mance metric). Therefore, we use a variable-bandwidth ker-
nel density estimator [20] to compute the one-dimensional
density of the data. We then find the local minima and max-
ima in the density, and use those points to cluster the data.
The minima represent the boundaries of the clusters, while
the maxima represent the centroids. The number of clusters
is thus defined by the number of local maxima in the density
of the performance metric. To perform variable kernel den-
sity estimation, we use an own-made R port of the akde1d
function [1], originally written for Matlab.
We find scoping conditions using the branch log, which

contains the outcome of each executed conditional branch.
If we find perfect correlations between some feature values

and the outcome of specific branches, then we can infer that
for some partitions of the values of the features, a specific
method is taking a specific execution path. We use this infor-
mation to partition the observations based on their execution
paths. Then, we proceed with the same regression analysis
that we described earlier.

5 Basic Validation
As a first evaluation, we conduct controlled experiments to
(1) measure the running time for performing the analysis,
(2) validate the accuracy of our measurements, and (3) test
the robustness of the resulting performance annotations.

Running Time. The time for generating the static instru-
mentation code is negligible. For example, generating the
instrumentation code for all of MySQL takes less than 10
seconds. The running time of the statistical analysis depends
on a number of parameters, including number of features,
the number of measurements, and the complexity of the code
(e.g., number of branch conditions). For our unoptimized pro-
totype, producing the annotation for a single function with
10 candidate features took, on average, less than 1 second.

Accuracy. We analyze sixteen functions, each exhibiting
a well-defined behavior in terms of running times, which
we control using usleep. We experiment with times linearly
and quadratically correlated with a given value of an input
feature, and also with running times chosen at random from
a known distribution independent of any feature. In all these
cases, we first verify that Freud accurately derives a model of
the expected class (quadratic, linear, etc.) for each function.
We then measure the accuracy of the specific annotations
through cross-validation for all sixteen functions with an
overall minimum R2 value of 0.9866.

Robustness. To test for perturbations from the instrumen-
tation, we analyze the same sixteen controlled functions un-
der two configurations: normal instrumentation and double
instrumentation (i.e., log everything twice). We would expect
that if instrumentation perturbs data and produces wrong an-
notations, then doubling the instrumentation would double
the perturbation and therefore lead to significantly differ-
ent annotations. But that is not the case. The experiment
confirms that the models for both configurations (for the
same function) are of the same class (e.g., linear) and they
are equivalent. We measure equivalence by checking that a
model derived with double instrumentation predicts the data
collected with normal instrumentation with the same high
accuracy as the model derived with normal instrumentation,
and vice-versa, with a minimum R2 value of 0.9838.

6 Case Studies
We now demonstrate the use of Freud on three real-world,
complex software systems: ownCloud, a remote storage web
applicationwritten in PHP;MySQL, awell-known andwidely
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used DBMS written in C/C++; and the x264 library and ap-
plication for encoding video streams into the H.264/MPEG-4
AVC compression format, written in C. We use Freud to
derive performance annotations for all three systems for
several metrics, including running time, dynamic memory
allocation, and lock holding/waiting time.

We note that for the case studies, the goal of the evaluation
is demonstrative, as opposed to quantitative. We show that
Freud outputs performance annotations and graphs for many
different software components of the three systems, that are
easy to read and interpret for the performance analyst. Even
though these three systems are very different in their func-
tionalities, programming languages used, and deployment,
we successfully applied the same analysis techniques to all of
them. We purposely chose functions to analyze and present
that exhibit different features of performance annotations
and/or interesting and sometimes counter-intuitive behav-
iors. We go from simple to progressively more articulate
cases.
In summary, we demonstrate that Freud correctly identi-

fies many interesting behaviors; in particular that Freud is
effective even in cases where the performance depends on
multiple features or on specific internal conditions (parame-
ters or state) or external conditions (environment); that all
such behaviors can be meaningfully described by relatively
simple annotations that relate input features and measured
metrics; that Freud automatically identifies such relevant
input features, and is also able to reference them with names
that are immediately meaningful to developers; that the re-
sulting annotations can be used not only as documentation
but also to detect performance regressions and anomalies;
that Freud and its annotations can be used to diagnose non-
trivial performance bugs.

6.1 ownCloud
For the first case study, we create a scaled-down replica of a
real-world data center that runs a cloud application called
SWITCHdrive. SWITCHdrive is a file-hosting cloud service
similar to Dropbox operated by SWITCH, the national ISP
for academic institutions in Switzerland. Our replica runs
on 12 instead of 41 servers, but it is otherwise identical in
its structure and configuration, including applications, web
servers, storage layers, virtualization stack, hosts, and net-
work. We focus our analysis on the ownCloud application,
which is written in PHP.

We use the WebDAV filesystem interface (davfs) provided
by ownCloud to mount a user folder on a spare client ma-
chine. We then use this folder to apply two workloads. The
first runs an rsync operation that copies a large tree of di-
rectories and files (the complete Linux kernel source) to the
mounted directory. The second workload consists of more
than 100,000 requests involving files of different sizes, name-
lengths, and relative path lengths. To improve the clarity

of the visualization without losing generality, we limit our
presentation to about two thousand requests.

Selected Results. At a basic level, performance annota-
tions provide human readable documentation of the actual
performance of methods. The textual representation of the
performance annotation can also be easily parsed by other
analysis tools, such as a performance checker. As a comple-
ment to the textual representation, the graphs illustrate the
trends and the key performance parameters for the benefit
of human analysts.

Figure 3 shows some interesting behaviors that exemplify
common correlations (or lack thereof) found in ownCloud.
The x-axis indicates the relevant feature; the y-axis indicates
the measured metric.
The first two graphs show two annotations for generate-

MultiStatus, a method that takes an array of file properties.
The method iterates over the objects in the array, comput-
ing some data about each one. The graph on the left clearly
shows that memory usage is linearly correlated to the size
of the input array. As it turns out, this linear behavior can be
clearly deduced from the code. The data is also perfectly lin-
ear because the chosen metric (memory usage) is not affected
by noise. The graph in the center shows the run time, which
is more noisy. But again, a regression produces a fitting per-
formance model, which in this case is quadratic. Although
not immediately obvious, this quadratic behavior indeed
corresponds to the algorithmic complexity of the code.

Finally, the graph on the right shows the run time for the
emit_file_hooks_pre method, which is used to invoke call-
back functions associated with file events. The graph shows
the running time over string-length of the path parameter.
However, in this case Freud did not find good regressions
with this or any other feature, and therefore formulated an
annotation based on clusters of the running time metric.

To perform the exploratory analysis described above, the
user of Freud must (1) choose the methods to analyze and
pass their names to the runkit tool that in turn creates the cor-
responding instrumentation code; (2) run the instrumented
SWITCHdrive server to collect logs; and (3) run the statisti-
cal analysis tool to create performance annotations for some
chosen performance metrics.

Use of Annotations in Anomaly Detection. Having de-
rived several performance annotations, we ask whether these
annotations would serve developers and system operators
beyond their value as documentation. In particular, we try
using annotations as assertions and therefore as failure or
anomaly detectors. We then verify that such detectors are
sensitive to real anomalies at the same time as they are robust
with respect to different workloads.

We proceed as follows: we first derive annotations using
the two workloads described above. We then run the same
workloads in a special setting in which we artificially in-
troduce an anomaly in the system. In this setting, we use

8
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Figure 3. Some annotations for ownCloud: linear and quadratic regressions (left, center) and clusters (right).

annotations as standard one-sample statistical tests to com-
pare measured metrics to the idealized model given by the
annotation. We record an assertion violation whenever the
test indicates that the measurements do not conform to the
annotation. For each run, we then count the number of as-
sertions passed (or failed) for all the instrumented methods.

As an anomaly, we introduce an artificial network latency
between the virtual machine hosting the database server
and the rest of the cluster, varying the delay from 0 to 10
milliseconds. The case of 0ms serves as a robustness check
of the assertions generated during training.
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Figure 4.Robustness, use of annotations to detect anomalies.

Figure 4 shows the cumulative distribution function of
the passed assertions as a percentage of all assertions. The
graph shows that assertion failures clearly expose a change
in the performance behavior of the system, thereby signaling
a performance problem. The overall difference may appear
small. Indeed, we only tweak the behavior of the database
component, leaving all the other components in their original
configurations. This means that only a fraction of the 138
methods analyzed are affected by the slow database. In fact,
we observe that the methods whose annotations are violated
more often in the different experiments are those that directly
or indirectly involve database operations.

6.2 MySQL
In the second case study, we use Freud to investigate two per-
formance bugs reported on the MySQL bug tracker (n. 94296
and 92979). To reproduce these bugs we use different versions
of MySQL. We compile the unmodified code cloned from the
MySQL github repository [15] with gcc 7.3 on a Ubuntu 18.04
64-bit machine. We pass the -g and -gstrict-dwarf flags to
the compiler to add standard DWARF debugging symbols in
the ELF mysqld binary. We run the experiments on a Intel
Xeon CPU E5-2670, with 64GB of ram, whose root partition
is mounted on a Samsung SSD 850 PRO drive. We run the
MySQL server with the default configuration. We use the
instrumentation described in §4.1. We inject the workload
locally using the MySQL client application on the same host
that runs the server. We use modified versions of the work-
loads attached to the bug reports. We modify the workloads
to obtain a greater variety for some feature values.

Bug 92979. The report describes a performance regres-
sion in MySQL 8 as compared to version 5.7 for a specific
insertion workload. The regression has been verified but not
fixed by the developers. The root cause is not known.
We replicate and analyze the bug using versions 5.7.24

and 8.0.11. As a workload, we use the MySQL dump attached
to the bug report. The dump consists of a set of INSERT
operations for a specific table. Using this set as a basis, we
create a workload with a series of INSERT operations each
inserting an increasing number of rows. As an entry point
for our investigation, we instrument the high level function
mysql_execute_command, which is present with the same
signature in both versions.

Figure 5 shows the annotations and corresponding graphs
generated by Freud for MySQL versions 5.7.24 (top) and
8.0.11 (bottom), respectively. The annotations and the graphs
evidence the performance regression. Freud identifies the
size of the input query as a relevant features, and formulates a
linear performance model for both versions. However, Freud
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finds a significantly higher linear coefficient for version 8
than for version 5 (4.94 vs. 0.86).
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Figure 5. mysql_execute_command, 5.7.24 (top) vs. 8.0.11.

Notice that the running times for version 5 are lower, and
therefore the measurements are affected in a greater propor-
tion by other factors, such as the storage access times. Freud
treats those factors as additive noise as discussed in §3.2. Also
notice that, differently from version 5, MySQL version 8 per-
forms some additional startup operations during execution
of mysql_execute_command whose running time correlates
with another input feature (dynamic_variable_version), as
evidenced by the multiple regression found by Freud.

Bug 94296. Bug n. 94296 reports a difference in the execu-
tion time of functionally identical SELECT queries that use
different operators. The performance is found to be worse
when using a series of IN operators instead of a disjunction
of conjunctions. The bug is marked as fixed in MySQL 8.
However, our analysis with Freud demonstrates that the bug
is still present in version 8.0.15.
The workload consists of two SELECT queries provided

with the bug report. As with Bug n. 92979, we split the work-
load into multiple queries of increasing sizes. The queries
are simple selections on a single table t (SELECT * FROM t
WHERE . . . ) with the same logical condition on two columns
c1 and c2 expressed with two different WHERE clauses: one

with the IN operator, (c1, c2) IN ((v11,v21), . . . , (v1n,v2n)),
the other with AND/OR, (c1 = v11 AND c2 = v21) OR . . .OR
(c1 = v1n AND c2 = v2n).
We start our analysis from test_quick_select(), which we

find as the highest-level function in MySQL that processes
all the queries of the given workload. We use Freud to an-
alyze the running time of test_quick_select(), obtaining the
performance annotations shown in Figure 6.
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Figure 6. test_quick_select(): IN vs AND/OR query.

Freud automatically distinguishes two different behaviors
that depend on the query type. test_quick_select() takes a
cond parameter that is statically seen as a structure of the
generic class Item, although its actual type is a different sub-
class when the query uses the IN operator and the AND/OR.
The virtual table pointer, which Freud considers as a fea-
ture (logged as an integer), distinguishes the actual type and
their different behaviors. The time grows linearly with the
AND/OR operator (which produces longer query strings),
but grows quadratically with the IN operator.
Through a simple manual inspection, we follow a chain

of functions executed in the case of IN queries. We then
analyze these functions with Freud to find the origin of the
quadratic behavior. This analysis points to tree_or() that in
turn calls key_or(). key_or() computes the logical disjunction
of two keys encoded with two RB-trees. Freud reveals that
key_or() has a linear complexity but is called repeatedly,
as many times as there are clauses, with a key2 parameter
that progressively grows in size (Figure 7) from zero to the
number of clauses in the query. This arithmetic progression
explains the overall quadratic behavior.
Reading the well documented code of key_or(), we find

that key_or() is designed to compute a more general dis-
junction of ranges, as opposed to the specific values in the
reported workload. This may suggest a specialized imple-
mentation and therefore a more radical bug fix.
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Figure 7. Arithmetic progression of key_or().

Other metrics and other bi-modal behaviors. The an-
notation for the fseg_create_general()method (Figure 8) shows
a case in which the behavior is bi-modal depending on a cer-
tain condition. If the page_id parameter is greater than 0,
then the method allocates a fixed amount of memory. Con-
versely, if page_id is equal to 0, then the method allocates
a variable amount of memory, which we could not predict
successfully with the features collected for the experiment.
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Figure 8. fseg_create_general: branch analysis.

A code inspection confirms that fseg_create_general() con-
tains a switch that follows different execution paths depend-
ing on the value of page_id. If page_id is equal to 0, the
method allocates newmemory for a new segment. Otherwise
the method returns an already allocated buffer, and performs
other operations, which cause some memory consumption.

Use of Freud in Identifying Performance Regressions.
For bug 92979, Freud could be used to react to a perfor-
mance regression. Freud would have first been used to create
performance annotations for some symbols, either running
the instrumented version of MySQL directly in the runtime
deployment, or executing some performance tests before de-
ploying the new version. The result of this analysis consists
of a set of textual performance annotations, in addition to

the graphs. When a newer version of MySQL become avail-
able, the performance analyst uses Freud to produce the new
logs for the same symbols that had been already analyzed.
This time, the statistical analysis tool takes additionally as in-
put the textual performance annotations produced with the
previous version of MySQL. The analysis finds a significant
difference between the two performance profiles, and signals
the anomaly, producing the new performance annotation
that the performance analyst can use to see the differences
and start the investigation.

Use of Freud inPerformanceDebugging. With bug 94296
we show a different use of Freud. This time the anomalous
performance behavior is noticed by MySQL users, and re-
ported on the bug tracker. The performance analyst, reading
the bug description, decides to produce performance anno-
tations for some specific symbols. The analyst passes the
list of names of symbols to Freud, and executes the instru-
mented version of MySQL with the workload attached to
the bug report. In this (proactive) scenario, the performance
analyst reads the graphs produced by Freud to quickly see
and characterize the anomalous behavior. The knowledge
acquired by the analyst drives the investigation toward other
symbols of MySQL, which finally lead to the root cause of
the resulting performance behavior.

6.3 x264
For the third case study, we use the most recent version of
x264, an open-source library and utility for H.264/MPEG-4
video encoding [24]. We run all experiments on a 4-core,
8-thread Intel Core i7-6700HQ CPU at 2.60GHz, in a system
equipped with 8GB of RAM and a NVMe SSD drive. We
compile x264 with gcc 8.3 on a Ubuntu 18.10 64-bit machine.
As a workload, we use x264 to convert or reencode six

different videos (different content) from either VP9 or H.264
to H.264. We reencode each video at the original resolution.
All videos have the same aspect ratio (16:9) but different
vertical resolutions, ranging from 240p to 2160p, and different
frame rates (25–30fps).We then run the experimentswith 2, 4,
8, and 12 threads (default is 12). We also enable or disable the
sliced-threads option to test both the slice-based and frame-
based processing of x264. Finally, for some experiments we
also use the Intel p-state driver to change the CPU clock
speed between 800MHz, 1.6GHz, and 2.6GHz.
In this case study we show another proactive usage sce-

nario, in which an engineer could use Freud to explore and
get a better understanding of a complex application like x264.
The complexity of the performance of this program stems
on the one hand from the tightly optimized and highly par-
allel processing model, and on the other hand from the large
number of available options that select different computation
modes and optimization levels. In this scenario, the engineer
creates performance annotations for symbols whose name,
or code, seem interesting from a performance viewpoint.
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Selected Results. We start with ff_h2645_extract_rbsp(),
a utility function that extracts a raw bit stream from an h264
source buffer. Freud derives an annotation (Figure 9) that in-
dicates that the running time increases linearly with the size
of the input buffer. Moreover, Freud also finds an interaction
between the size and cpu_clock features. Qualitatively, the
annotation indicates that the running time is cpu-bound.
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Figure 9. ff_h2645_extract_rbsp: running time.

Moving to the core of the encoding functionality, we ana-
lyze the x264_8_encoder_encode function. For clarity, we do
not vary the CPU speed, since there are already many param-
eters that affect performance. x264_8_encoder_encode drives
the encoding process, managing the pool of worker threads
that perform the actual encoding operations. In slice-based
mode, x264_8_encoder_encode runs once for every output
video frame; splits the frame in many slices; assigns those
to the worker threads for processing; and waits for them to
complete the frame. Every output frame is completed before
the next one is processed. Conversely, in frame-based mode,
x264_8_encoder_encode processes a set of frames at a time,
assigning an entire frame to each worker thread.
We first run Freud so as to filter out the measurements

affected by any context switch (voluntary or not). This is an
intentional bias to remove some noise and complexity, and to
show that the actual work performed grows as expected with
higher resolutions, as shown in the left part of Figure 10.

Interestingly, without this filter we see a different behavior.
The running time of x264_8_encoder_encode is much higher,
and the correlation with the video resolution is not as clear.
We therefore analyze the time spent waiting on a condi-
tion variable, and find that it completely dominates the to-
tal running time. Freud, with branch analysis, finds that in
sliced-mode (h->param.b_sliced_threads=1) the waiting time
correlates well with the number of threads and the video res-
olution (Figure 10, right). The waiting time grows with the
resolution of the video, and is lower with more threads. We
conclude that indeed x264_8_encoder_encode() always waits
for the worker threads to finish processing their slices.

When the processing is frame-based, instead, there is lit-
tle or no correlation between the collected features and the
run time, and therefore Freud fails to find a good regres-
sion and instead performs a cluster analysis. The resulting
model (condition !sliced in Figure 10) is still informative and
shows that the majority of the frame-based executions of
x264_8_encoder_encode wait for a very short time.

Moving to another analysis, slice_write is one of the most
time consuming functions and is executed by the worker
threads in all the processing modes (Figure 11). In this case
Freud shows that having more threads has opposite effects
on the running time depending on the processing mode. Also,
Freud’s annotations reveals that x264_8_encoder_encode is
not synchronizing on each execution of slice_write in frame-
based mode, since for some inputs slice_write has a much
higher running time (Figure 11) than any waiting time ob-
served for x264_8_encoder_encode (Figure 10, right).

7 Related Work
Performance Assertion Specification. The idea of as-

sertions that specify performance properties is not new. PSpec [17]
is a language for specifying performance expectations as au-
tomatically checkable assertions. PSpec uses a trace of events
produced by an application or system (e.g., a server log). De-
velopers manually specify performance assertions, and the
tool checks whether the assertions hold for a given trace.
PSpec also includes a solver that uses linear regression to au-
tomatically infer the coefficients to be used in the assertions.

Vetter andWorley [23] use assertions on code segments for
three scenarios: throwing performance exceptions, validat-
ing performance models, and adapting an algorithm dynam-
ically at runtime. Their assertions are expressions involving
hardware performance counters (e.g., cycles, instructions,
or cache misses), application variables, and constants. Both
of the above approaches allow developers to specify fixed
bounds (e.g., on runtime), but they do not provide a proba-
bilistic approach based on distributions. Moreover, they do
not infer performance assertions automatically from scratch.

Deriving Models of Code Performance. Traditional pro-
filers measure the execution cost (e.g., running time, exe-
cuted instructions, cache misses) of a piece of code. They
produce profiles such as: function f was called a total of 1000
times, 10% of program execution time was spent in function
f , invocations of function f took 4 ms on average. Trend
Profiling [7], Algorithmic Profiling [25] and Input-Sensitive
Profiling [3, 4] represent a new form of profiling: instead of
only measuring the execution cost, these profilers character-
ize a cost function: the relationship between input size and
execution cost. They produce profiles such as: function f
takes 5 + 3i + 2i2 ms, where i is the length of the input array.
Freud expands on this idea in four ways: (1) Unlike algo-

rithmic profiling, which measures cost in terms of platform-
independent iteration counts, wemeasure running time. This
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Figure 10. encoder_encode: running time without context switches (left); wait time (center, right).
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Figure 11. slice_write, sliced vs framed processing.

is a real metric that includes the effects of lower layers of the
system, such as virtual memory or caching. This kind of inte-
gration of information from different system layers is similar
to Vertical Profiling [10], but with a focus on cost functions
instead of cost. (2) The domain of the cost function in algorith-
mic profiling is the size of a data structure. In input-sensitive
profiling, it is the number of distinct accessed memory loca-
tions. In contrast, our performance annotations can include
arbitrary features of the executing program. (3) Algorithmic
and input-sensitive profiling produce cost functions, but the
specific approach for fitting a cost function to the measure-
ments is outside the scope of that work. Freud automatically
infers cost functions from the measured data points, pro-
ducing complete formal performance annotations. (4) Code
often exhibits different performance modes (e.g., slow and

fast paths), and Freud is able to automatically partition the
measurements and to model them as sets of scoped cost
functions; prior work produces a single cost function.
Many performance models use static features, such as

calling context [2], application configuration [9], OS ver-
sion [22], or hardware platform [13]. In contrast, Freud uses
the dynamic state of the running system, i.e., the features
that most directly affect computational complexity and are
most relevant for scalability.

8 Conclusion
This paper presents performance annotations, which for-
mulate probabilistic models of the performance of software
systems. These models correlate measured metrics with se-
mantically meaningful input or system state, giving devel-
opers and performance analysts a greater understanding of
system behavior. We demonstrate the automatic derivation
and the use of performance annotations with three case stud-
ies: the ownCloud storage service; the MySQL database; and
the x264 video encoder. Overall, performance annotations
are a first step towards a more general goal of providing
developers and designers with useful tools for analyzing and
understanding the behavior of applications.
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