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ABSTRACT
Dryad is a general-purpose distributed execution engine for
coarse-grain data-parallel applications. A Dryad applica-
tion combines computational “vertices” with communica-
tion “channels” to form a dataflow graph. Dryad runs the
application by executing the vertices of this graph on a set of
available computers, communicating as appropriate through
files, TCP pipes, and shared-memory FIFOs.

The vertices provided by the application developer are
quite simple and are usually written as sequential programs
with no thread creation or locking. Concurrency arises from
Dryad scheduling vertices to run simultaneously on multi-
ple computers, or on multiple CPU cores within a computer.
The application can discover the size and placement of data
at run time, and modify the graph as the computation pro-
gresses to make efficient use of the available resources.

Dryad is designed to scale from powerful multi-core sin-
gle computers, through small clusters of computers, to data
centers with thousands of computers. The Dryad execution
engine handles all the difficult problems of creating a large
distributed, concurrent application: scheduling the use of
computers and their CPUs, recovering from communication
or computer failures, and transporting data between ver-
tices.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming—Distributed programming

General Terms
Performance, Design, Reliability

Keywords
Concurrency, Distributed Programming, Dataflow, Cluster
Computing
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1. INTRODUCTION
The Dryad project addresses a long-standing problem:

how can we make it easier for developers to write efficient
parallel and distributed applications? We are motivated
both by the emergence of large-scale internet services that
depend on clusters of hundreds or thousands of general-
purpose servers, and also by the prediction that future ad-
vances in local computing power will come from increas-
ing the number of cores on a chip rather than improving
the speed or instruction-level parallelism of a single core
[3]. Both of these scenarios involve resources that are in
a single administrative domain, connected using a known,
high-performance communication topology, under central-
ized management and control. In such cases many of the
hard problems that arise in wide-area distributed systems
may be sidestepped: these include high-latency and unre-
liable networks, control of resources by separate federated
or competing entities, and issues of identity for authentica-
tion and access control. Our primary focus is instead on
the simplicity of the programming model and the reliability,
efficiency and scalability of the applications.

For many resource-intensive applications, the simplest way
to achieve scalable performance is to exploit data paral-
lelism. There has historically been a great deal of work
in the parallel computing community both on systems that
automatically discover and exploit parallelism in sequential
programs, and on those that require the developer to explic-
itly expose the data dependencies of a computation. There
are still limitations to the power of fully-automatic paral-
lelization, and so we build mainly on ideas from the latter
research tradition. Condor [37] was an early example of such
a system in a distributed setting, and we take more direct
inspiration from three other models: shader languages devel-
oped for graphic processing units (GPUs) [30, 36], Google’s
MapReduce system [16], and parallel databases [18]. In all
these programming paradigms, the system dictates a com-
munication graph, but makes it simple for the developer to
supply subroutines to be executed at specified graph ver-
tices. All three have demonstrated great success, in that
large numbers of developers have been able to write con-
current software that is reliably executed in a distributed
fashion.

We believe that a major reason for the success of GPU
shader languages, MapReduce and parallel databases is that
the developer is explicitly forced to consider the data paral-
lelism of the computation. Once an application is cast into
this framework, the system is automatically able to provide
the necessary scheduling and distribution. The developer
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need have no understanding of standard concurrency mech-
anisms such as threads and fine-grain concurrency control,
which are known to be difficult to program correctly. In-
stead the system runtime abstracts these issues from the
developer, and also deals with many of the hardest dis-
tributed computing problems, most notably resource alloca-
tion, scheduling, and the transient or permanent failure of a
subset of components in the system. By fixing the boundary
between the communication graph and the subroutines that
inhabit its vertices, the model guides the developer towards
an appropriate level of granularity. The system need not try
too hard to extract parallelism within a developer-provided
subroutine, while it can exploit the fact that dependencies
are all explicitly encoded in the flow graph to efficiently
distribute the execution across those subroutines. Finally,
developers now work at a suitable level of abstraction for
writing scalable applications since the resources available at
execution time are not generally known at the time the code
is written.

The aforementioned systems restrict an application’s com-
munication flow for different reasons. GPU shader languages
are strongly tied to an efficient underlying hardware imple-
mentation that has been tuned to give good performance
for common graphics memory-access patterns. MapReduce
was designed to be accessible to the widest possible class of
developers, and therefore aims for simplicity at the expense
of generality and performance. Parallel databases were de-
signed for relational algebra manipulations (e.g. SQL) where
the communication graph is implicit.

By contrast, the Dryad system allows the developer fine
control over the communication graph as well as the subrou-
tines that live at its vertices. A Dryad application developer
can specify an arbitrary directed acyclic graph to describe
the application’s communication patterns, and express the
data transport mechanisms (files, TCP pipes, and shared-
memory FIFOs) between the computation vertices. This
direct specification of the graph also gives the developer
greater flexibility to easily compose basic common opera-
tions, leading to a distributed analogue of “piping” together
traditional Unix utilities such as grep, sort and head.

Dryad is notable for allowing graph vertices (and compu-
tations in general) to use an arbitrary number of inputs and
outputs. MapReduce restricts all computations to take a
single input set and generate a single output set. SQL and
shader languages allow multiple inputs but generate a single
output from the user’s perspective, though SQL query plans
internally use multiple-output vertices.

In this paper, we demonstrate that careful choices in graph
construction and refinement can substantially improve ap-
plication performance, while compromising little on the pro-
grammability of the system. Nevertheless, Dryad is cer-
tainly a lower-level programming model than SQL or Di-
rectX. In order to get the best performance from a native
Dryad application, the developer must understand the struc-
ture of the computation and the organization and properties
of the system resources. Dryad was however designed to be
a suitable infrastructure on which to layer simpler, higher-
level programming models. It has already been used, by our-
selves and others, as a platform for several domain-specific
systems that are briefly sketched in Section 7. These rely on
Dryad to manage the complexities of distribution, schedul-
ing, and fault-tolerance, but hide many of the details of the
underlying system from the application developer. They

use heuristics to automatically select and tune appropriate
Dryad features, and thereby get good performance for most
simple applications.

We summarize Dryad’s contributions as follows:

• We built a general-purpose, high performance distrib-
uted execution engine. The Dryad execution engine
handles many of the difficult problems of creating a
large distributed, concurrent application: scheduling
across resources, optimizing the level of concurrency
within a computer, recovering from communication or
computer failures, and delivering data to where it is
needed. Dryad supports multiple different data trans-
port mechanisms between computation vertices and
explicit dataflow graph construction and refinement.

• We demonstrated the excellent performance of Dryad
from a single multi-core computer up to clusters con-
sisting of thousands of computers on several nontrivial,
real examples. We further demonstrated that Dryad’s
fine control over an application’s dataflow graph gives
the programmer the necessary tools to optimize trade-
offs between parallelism and data distribution over-
head. This validated Dryad’s design choices.

• We explored the programmability of Dryad on two
fronts. First, we have designed a simple graph descrip-
tion language that empowers the developer with ex-
plicit graph construction and refinement to fully take
advantage of the rich features of the Dryad execution
engine. Our user experiences lead us to believe that,
while it requires some effort to learn, a programmer
can master the APIs required for most of the appli-
cations in a couple of weeks. Second, we (and oth-
ers within Microsoft) have built simpler, higher-level
programming abstractions for specific application do-
mains on top of Dryad. This has significantly lowered
the barrier to entry and increased the acceptance of
Dryad among domain experts who are interested in
using Dryad for rapid application prototyping. This
further validated Dryad’s design choices.

The next three sections describe the abstract form of a
Dryad application and outline the steps involved in writ-
ing one. The Dryad scheduler is described in Section 5; it
handles all of the work of deciding which physical resources
to schedule work on, routing data between computations,
and automatically reacting to computer and network fail-
ures. Section 6 reports on our experimental evaluation of
the system, showing its flexibility and scaling characteris-
tics in a small cluster of 10 computers, as well as details of
larger-scale experiments performed on clusters with thou-
sands of computers. We conclude in Sections 8 and 9 with
a discussion of the related literature and of future research
directions.

2. SYSTEM OVERVIEW
The overall structure of a Dryad job is determined by

its communication flow. A job is a directed acyclic graph
where each vertex is a program and edges represent data
channels. It is a logical computation graph that is automat-
ically mapped onto physical resources by the runtime. In
particular, there may be many more vertices in the graph
than execution cores in the computing cluster.
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At run time each channel is used to transport a finite se-
quence of structured items. This channel abstraction has
several concrete implementations that use shared memory,
TCP pipes, or files temporarily persisted in a file system.
As far as the program in each vertex is concerned, channels
produce and consume heap objects that inherit from a base
type. This means that a vertex program reads and writes its
data in the same way regardless of whether a channel seri-
alizes its data to buffers on a disk or TCP stream, or passes
object pointers directly via shared memory. The Dryad sys-
tem does not include any native data model for serializa-
tion and the concrete type of an item is left entirely up to
applications, which can supply their own serialization and
deserialization routines. This decision allows us to support
applications that operate directly on existing data includ-
ing exported SQL tables and textual log files. In practice
most applications use one of a small set of library item types
that we supply such as newline-terminated text strings and
tuples of base types.

A schematic of the Dryad system organization is shown
in Figure 1. A Dryad job is coordinated by a process called
the “job manager” (denoted JM in the figure) that runs
either within the cluster or on a user’s workstation with
network access to the cluster. The job manager contains
the application-specific code to construct the job’s commu-
nication graph along with library code to schedule the work
across the available resources. All data is sent directly be-
tween vertices and thus the job manager is only responsible
for control decisions and is not a bottleneck for any data
transfers.

Files, FIFO, Network
Job schedule Data plane

Control plane

D D DNS

V V V

JM

Figure 1: The Dryad system organization. The job manager (JM)
consults the name server (NS) to discover the list of available com-
puters. It maintains the job graph and schedules running vertices (V)
as computers become available using the daemon (D) as a proxy.
Vertices exchange data through files, TCP pipes, or shared-memory
channels. The shaded bar indicates the vertices in the job that are
currently running.

The cluster has a name server (NS) that can be used to
enumerate all the available computers. The name server
also exposes the position of each computer within the net-
work topology so that scheduling decisions can take account
of locality. There is a simple daemon (D) running on each
computer in the cluster that is responsible for creating pro-
cesses on behalf of the job manager. The first time a vertex
(V) is executed on a computer its binary is sent from the job
manager to the daemon and subsequently it is executed from
a cache. The daemon acts as a proxy so that the job man-
ager can communicate with the remote vertices and monitor
the state of the computation and how much data has been

read and written on its channels. It is straightforward to run
a name server and a set of daemons on a user workstation
to simulate a cluster and thus run an entire job locally while
debugging.

A simple task scheduler is used to queue batch jobs. We
use a distributed storage system, not described here, that
shares with the Google File System [21] the property that
large files can be broken into small pieces that are replicated
and distributed across the local disks of the cluster comput-
ers. Dryad also supports the use of NTFS for accessing files
directly on local computers, which can be convenient for
small clusters with low management overhead.

2.1 An example SQL query
In this section, we describe a concrete example of a Dryad

application that will be further developed throughout the re-
mainder of the paper. The task we have chosen is representa-
tive of a new class of eScience applications, where scientific
investigation is performed by processing large amounts of
data available in digital form [24]. The database that we
use is derived from the Sloan Digital Sky Survey (SDSS),
available online at http://skyserver.sdss.org.

We chose the most time consuming query (Q18) from a
published study based on this database [23]. The task is to
identify a “gravitational lens” effect: it finds all the objects
in the database that have neighboring objects within 30 arc
seconds such that at least one of the neighbors has a color
similar to the primary object’s color. The query can be
expressed in SQL as:

select distinct p.objID
from photoObjAll p
join neighbors n — call this join “X”
on p.objID = n.objID
and n.objID < n.neighborObjID
and p.mode = 1

join photoObjAll l — call this join “Y”
on l.objid = n.neighborObjID
and l.mode = 1
and abs((p.u-p.g)-(l.u-l.g))<0.05
and abs((p.g-p.r)-(l.g-l.r))<0.05
and abs((p.r-p.i)-(l.r-l.i))<0.05
and abs((p.i-p.z)-(l.i-l.z))<0.05

There are two tables involved. The first, photoObjAll
has 354,254,163 records, one for each identified astronomical
object, keyed by a unique identifier objID. These records
also include the object’s color, as a magnitude (logarithmic
brightness) in five bands: u, g, r, i and z. The second table,
neighbors has 2,803,165,372 records, one for each object
located within 30 arc seconds of another object. The mode
predicates in the query select only “primary” objects. The
< predicate eliminates duplication caused by the neighbors
relationship being symmetric. The output of joins “X” and
“Y” are 932,820,679 and 83,798 records respectively, and the
final hash emits 83,050 records.

The query uses only a few columns from the tables (the
complete photoObjAll table contains 2 KBytes per record).
When executed by SQLServer the query uses an index on
photoObjAll keyed by objID with additional columns for
mode, u, g, r, i and z, and an index on neighbors keyed by
objID with an additional neighborObjID column. SQL-
Server reads just these indexes, leaving the remainder of the
tables’ data resting quietly on disk. (In our experimental
setup we in fact omitted unused columns from the table, to
avoid transporting the entire multi-terabyte database across
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the country.) For the equivalent Dryad computation we ex-
tracted these indexes into two binary files, “ugriz.bin” and
“neighbors.bin,” each sorted in the same order as the in-
dexes. The “ugriz.bin” file has 36-byte records, totaling
11.8 GBytes; “neighbors.bin” has 16-byte records, total-
ing 41.8 GBytes. The output of join “X” totals 31.3 GBytes,
the output of join “Y” is 655 KBytes and the final output is
649 KBytes.

D D

MM 4n

SS 4n

YY

U U

U N U N

H

n

n

X Xn

Figure 2: The communica-
tion graph for an SQL query.
Details are in Section 2.1.

We mapped the query to
the Dryad computation shown
in Figure 2. Both data files
are partitioned into n approx-
imately equal parts (that we
call U1 through Un and N1

through Nn) by objID ranges,
and we use custom C++ item
objects for each data record
in the graph. The vertices
Xi (for 1 ≤ i ≤ n) imple-
ment join “X” by taking their
partitioned Ui and Ni inputs
and merging them (keyed on
objID and filtered by the
< expression and p.mode=1)
to produce records containing
objID, neighborObjID, and
the color columns correspond-
ing to objID. The D vertices
distribute their output records
to the M vertices, partition-
ing by neighborObjID using
a range partitioning function
four times finer than that used
for the input files. The number
four was chosen so that four
pipelines will execute in paral-
lel on each computer, because
our computers have four pro-
cessors each. The M vertices perform a non-deterministic
merge of their inputs and the S vertices sort on neigh-
borObjID using an in-memory Quicksort. The output
records from S4i−3 . . . S4i (for i = 1 through n) are fed into
Yi where they are merged with another read of Ui to im-
plement join “Y”. This join is keyed on objID (from U) =
neighborObjID (from S), and is filtered by the remainder
of the predicate, thus matching the colors. The outputs of
the Y vertices are merged into a hash table at the H vertex
to implement the distinct keyword in the query. Finally, an
enumeration of this hash table delivers the result. Later in
the paper we include more details about the implementation
of this Dryad program.

3. DESCRIBING A DRYAD GRAPH
We have designed a simple language that makes it easy

to specify commonly-occurring communication idioms. It is
currently “embedded” for convenience in C++ as a library
using a mixture of method calls and operator overloading.

Graphs are constructed by combining simpler subgraphs
using a small set of operations shown in Figure 3. All of the
operations preserve the property that the resulting graph is
acyclic. The basic object in the language is a graph:

G = 〈VG, EG, IG, OG〉.

G contains a sequence of vertices VG, a set of directed edges
EG, and two sets IG ⊆ VG and OG ⊆ VG that “tag” some
of the vertices as being inputs and outputs respectively. No
graph can contain a directed edge entering an input vertex
in IG, nor one leaving an output vertex in OG, and these tags
are used below in composition operations. The input and
output edges of a vertex are ordered so an edge connects
specific “ports” on a pair of vertices, and a given pair of
vertices may be connected by multiple edges.

3.1 Creating new vertices
The Dryad libraries define a C++ base class from which

all vertex programs inherit. Each such program has a tex-
tual name (which is unique within an application) and a
static “factory” that knows how to construct it. A graph
vertex is created by calling the appropriate static program
factory. Any required vertex-specific parameters can be set
at this point by calling methods on the program object.
These parameters are then marshaled along with the unique
vertex name to form a simple closure that can be sent to a
remote process for execution.

A singleton graph is generated from a vertex v as G =
〈(v), ∅, {v}, {v}〉. A graph can be cloned into a new graph
containing k copies of its structure using the ^ operator
where C = G^k is defined as:

C = 〈V 1
G ⊕ · · · ⊕ V k

G , E1
G ∪ · · · ∪ Ek

G,

I1
G ∪ · · · ∪ Ik

G, O1
G ∪ · · · ∪ Ok

G〉.
Here Gn = 〈V n

G , En
G, In

G, On
G〉 is a “clone” of G containing

copies of all of G’s vertices and edges, ⊕ denotes sequence
concatenation, and each cloned vertex inherits the type and
parameters of its corresponding vertex in G.

3.2 Adding graph edges
New edges are created by applying a composition opera-

tion to two existing graphs. There is a family of composi-
tions all sharing the same basic structure: C = A ◦ B creates
a new graph:

C = 〈VA ⊕ VB, EA ∪ EB ∪ Enew, IA, OB〉
where C contains the union of all the vertices and edges in
A and B, with A’s inputs and B’s outputs. In addition,
directed edges Enew are introduced between vertices in OA

and IB. VA and VB are enforced to be disjoint at run time,
and since A and B are both acyclic, C is also.

Compositions differ in the set of edges Enew that they add
into the graph. We define two standard compositions:

• A >= B forms a pointwise composition as shown in Fig-
ure 3(c). If |OA| ≥ |IB | then a single outgoing edge
is created from each of A’s outputs. The edges are
assigned in round-robin to B’s inputs. Some of the
vertices in IB may end up with more than one incom-
ing edge. If |IB| > |OA|, a single incoming edge is
created to each of B’s inputs, assigned in round-robin
from A’s outputs.

• A >> B forms the complete bipartite graph between
OA and IB and is shown in Figure 3(d).

We allow the user to extend the language by implementing
new composition operations.
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AS = A^n

nA A

BS = B^n

nB B

E = (AS >= C >= BS)

n

n

C

A A

B B

E || (AS >= BS)

n

n

C

A A

B B

(A>=C>=D>=B) || (A>=F>=B)

D

C

F

A

B

A A

BB

AS >> BS

n

n B

C D

(B >= C) || (B >= D)AS >= BS

A A

nB B

n

a c d e

f g h

b

Figure 3: The operators of the graph description language. Circles are vertices and arrows are graph edges. A triangle at the bottom of a
vertex indicates an input and one at the top indicates an output. Boxes (a) and (b) demonstrate cloning individual vertices using the ^ operator.
The two standard connection operations are pointwise composition using >= shown in (c) and complete bipartite composition using >> shown in
(d). (e) illustrates a merge using ||. The second line of the figure shows more complex patterns. The merge in (g) makes use of a “subroutine”
from (f) and demonstrates a bypass operation. For example, each A vertex might output a summary of its input to C which aggregates them
and forwards the global statistics to every B. Together the B vertices can then distribute the original dataset (received from A) into balanced
partitions. An asymmetric fork/join is shown in (h).

3.3 Merging two graphs
The final operation in the language is ||, which merges

two graphs. C = A || B creates a new graph:

C = 〈VA ⊕∗ VB, EA ∪ EB, IA ∪∗ IB, OA ∪∗ OB〉
where, in contrast to the composition operations, it is not
required that A and B be disjoint. VA ⊕∗ VB is the con-
catenation of VA and VB with duplicates removed from the
second sequence. IA ∪∗ IB means the union of A and B’s in-
puts, minus any vertex that has an incoming edge following
the merge (and similarly for the output case). If a vertex
is contained in VA ∩ VB its input and output edges are con-
catenated so that the edges in EA occur first (with lower
port numbers). This simplification forbids certain graphs
with “crossover” edges, however we have not found this re-
striction to be a problem in practice. The invariant that the
merged graph be acyclic is enforced by a run-time check.

The merge operation is extremely powerful and makes it
easy to construct typical patterns of communication such as
fork/join and bypass as shown in Figures 3(f)–(h). It also
provides the mechanism for assembling a graph “by hand”
from a collection of vertices and edges. So for example, a
tree with four vertices a, b, c, and d might be constructed
as G = (a>=b) || (b>=c) || (b>=d).

The graph builder program to construct the query graph
in Figure 2 is shown in Figure 4.

3.4 Channel types
By default each channel is implemented using a tempo-

rary file: the producer writes to disk (typically on its local
computer) and the consumer reads from that file.

In many cases multiple vertices will fit within the re-
sources of a single computer so it makes sense to execute
them all within the same process. The graph language has
an “encapsulation” command that takes a graph G and re-
turns a new vertex vG. When vG is run as a vertex pro-
gram, the job manager passes it a serialization of G as an
invocation parameter, and it runs all the vertices of G si-
multaneously within the same process, connected by edges
implemented using shared-memory FIFOs. While it would
always be possible to write a custom vertex program with
the same semantics as G, allowing encapsulation makes it ef-
ficient to combine simple library vertices at the graph layer
rather than re-implementing their functionality as a new
vertex program.

Sometimes it is desirable to place two vertices in the same
process even though they cannot be collapsed into a single
graph vertex from the perspective of the scheduler. For ex-
ample, in Figure 2 the performance can be improved by
placing the first D vertex in the same process as the first
four M and S vertices and thus avoiding some disk I/O,
however the S vertices cannot be started until all of the D
vertices complete.

When creating a set of graph edges, the user can option-
ally specify the transport protocol to be used. The available
protocols are listed in Table 1. Vertices that are connected
using shared-memory channels are executed within a single
process, though they are individually started as their inputs
become available and individually report completion.

Because the dataflow graph is acyclic, scheduling dead-
lock is impossible when all channels are either written to
temporary files or use shared-memory FIFOs hidden within
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GraphBuilder XSet = moduleX^N;
GraphBuilder DSet = moduleD^N;
GraphBuilder MSet = moduleM^(N*4);
GraphBuilder SSet = moduleS^(N*4);
GraphBuilder YSet = moduleY^N;
GraphBuilder HSet = moduleH^1;

GraphBuilder XInputs = (ugriz1 >= XSet) || (neighbor >= XSet);
GraphBuilder YInputs = ugriz2 >= YSet;

GraphBuilder XToY = XSet >= DSet >> MSet >= SSet;
for (i = 0; i < N*4; ++i)
{

XToY = XToY || (SSet.GetVertex(i) >= YSet.GetVertex(i/4));
}
GraphBuilder YToH = YSet >= HSet;
GraphBuilder HOutputs = HSet >= output;

GraphBuilder final = XInputs || YInputs || XToY || YToH || HOutputs;

Figure 4: An example graph builder program. The communication graph generated by this program is shown in Figure 2.

Channel protocol Discussion
File (the default) Preserved after vertex execution

until the job completes.
TCP pipe Requires no disk accesses, but

both end-point vertices must be
scheduled to run at the same
time.

Shared-memory
FIFO

Extremely low communication
cost, but end-point vertices must
run within the same process.

Table 1: Channel types.

encapsulated acyclic subgraphs. However, allowing the de-
veloper to use pipes and “visible” FIFOs can cause dead-
locks. Any connected component of vertices communicating
using pipes or FIFOs must all be scheduled in processes that
are concurrently executing, but this becomes impossible if
the system runs out of available computers in the cluster.

This breaks the abstraction that the user need not know
the physical resources of the system when writing the appli-
cation. We believe that it is a worthwhile trade-off, since, as
reported in our experiments in Section 6, the resulting per-
formance gains can be substantial. Note also that the sys-
tem could always avoid deadlock by “downgrading” a pipe
channel to a temporary file, at the expense of introducing
an unexpected performance cliff.

3.5 Job inputs and outputs
Large input files are typically partitioned and distributed

across the computers of the cluster. It is therefore natural to
group a logical input into a graph G = 〈VP , ∅, ∅, VP 〉 where
VP is a sequence of “virtual” vertices corresponding to the
partitions of the input. Similarly on job completion a set
of output partitions can be logically concatenated to form a
single named distributed file. An application will generally
interrogate its input graphs to read the number of partitions
at run time and automatically generate the appropriately
replicated graph.

3.6 Job Stages
When the graph is constructed every vertex is placed in

a “stage” to simplify job management. The stage topology
can be seen as a “skeleton” or summary of the overall job,

and the stage topology of our example Skyserver query ap-
plication is shown in Figure 5. Each distinct type of vertex
is grouped into a separate stage. Most stages are connected
using the >= operator, while D is connected to M using the
>> operator. The skeleton is used as a guide for generating
summaries when monitoring a job, and can also be exploited
by the automatic optimizations described in Section 5.2.

4. WRITING A VERTEX PROGRAM

D

M

S

Y

U

U N

H

X

Figure 5: The stages
of the Dryad compu-
tation from Figure 2.
Section 3.6 has details.

The primary APIs for writing a
Dryad vertex program are exposed
through C++ base classes and ob-
jects. It was a design requirement
for Dryad vertices to be able to incor-
porate legacy source and libraries, so
we deliberately avoided adopting any
Dryad-specific language or sandbox-
ing restrictions. Most of the existing
code that we anticipate integrating
into vertices is written in C++, but
it is straightforward to implement
API wrappers so that developers can
write vertices in other languages, for
example C#. There is also significant
value for some domains in being able
to run unmodified legacy executables
in vertices, and so we support this as
explained in Section 4.2 below.

4.1 Vertex execution
Dryad includes a runtime library

that is responsible for setting up and
executing vertices as part of a dis-
tributed computation. As outlined in
Section 3.1 the runtime receives a clo-
sure from the job manager describing
the vertex to be run, and URIs de-
scribing the input and output chan-
nels to connect to it. There is cur-
rently no type-checking for channels
and the vertex must be able to deter-
mine, either statically or from the invocation parameters,
the types of the items that it is expected to read and write

64



on each channel in order to supply the correct serialization
routines. The body of a vertex is invoked via a standard
Main method that includes channel readers and writers in
its argument list. The readers and writers have a blocking
interface to read or write the next item, which suffices for
most simple applications. The vertex can report status and
errors to the job manager, and the progress of channels is
automatically monitored.

Many developers find it convenient to inherit from pre-
defined vertex classes that hide the details of the underlying
channels and vertices. We supply map and reduce classes
with similar interfaces to those described in [16]. We have
also written a variety of others including a general-purpose
distribute that takes a single input stream and writes on
multiple outputs, and joins that call a virtual method with
every matching record tuple. These “classes” are simply
vertices like any other, so it is straightforward to write new
ones to support developers working in a particular domain.

4.2 Legacy executables
We provide a library “process wrapper” vertex that forks

an executable supplied as an invocation parameter. The
wrapper vertex must work with arbitrary data types, so its
“items” are simply fixed-size buffers that are passed unmod-
ified to the forked process using named pipes in the file-
system. This allows unmodified pre-existing binaries to be
run as Dryad vertex programs. It is easy, for example, to
invoke perl scripts or grep at some vertices of a Dryad job.

4.3 Efficient pipelined execution
Most Dryad vertices contain purely sequential code. We

also support an event-based programming style, using a
shared thread pool. The program and channel interfaces
have asynchronous forms, though unsurprisingly it is harder
to use the asynchronous interfaces than it is to write se-
quential code using the synchronous interfaces. In some
cases it may be worth investing this effort, and many of the
standard Dryad vertex classes, including non-deterministic
merge, sort, and generic maps and joins, are built using the
event-based programming style. The runtime automatically
distinguishes between vertices which can use a thread pool
and those that require a dedicated thread, and therefore en-
capsulated graphs which contain hundreds of asynchronous
vertices are executed efficiently on a shared thread pool.

The channel implementation schedules read, write, seri-
alization and deserialization tasks on a thread pool shared
between all channels in a process, and a vertex can concur-
rently read or write on hundreds of channels. The runtime
tries to ensure efficient pipelined execution while still pre-
senting the developer with the simple abstraction of reading
and writing a single record at a time. Extensive use is made
of batching [28] to try to ensure that threads process hun-
dreds or thousands of records at a time without touching
a reference count or accessing a shared queue. The exper-
iments in Section 6.2 substantiate our claims for the effi-
ciency of these abstractions: even single-node Dryad appli-
cations have throughput comparable to that of a commercial
database system.

5. JOB EXECUTION
The scheduler inside the job manager keeps track of the

state and history of each vertex in the graph. At present
if the job manager’s computer fails the job is terminated,

though the vertex scheduler could employ checkpointing or
replication to avoid this. A vertex may be executed mul-
tiple times over the length of the job due to failures, and
more than one instance of a given vertex may be executing
at any given time. Each execution of the vertex has a ver-
sion number and a corresponding “execution record” that
contains the state of that execution and the versions of the
predecessor vertices from which its inputs are derived. Each
execution names its file-based output channels uniquely us-
ing its version number to avoid conflicts among versions. If
the entire job completes successfully then each vertex selects
a successful execution and renames its output files to their
correct final forms.

When all of a vertex’s input channels become ready a
new execution record is created for the vertex and placed
in a scheduling queue. A disk-based channel is considered
to be ready when the entire file is present. A channel that
is a TCP pipe or shared-memory FIFO is ready when the
predecessor vertex has at least one running execution record.

A vertex and any of its channels may each specify a “hard-
constraint” or a “preference” listing the set of computers on
which it would like to run. The constraints are combined
and attached to the execution record when it is added to
the scheduling queue and they allow the application writer
to require that a vertex be co-located with a large input file,
and in general let the scheduler preferentially run computa-
tions close to their data.

At present the job manager performs greedy scheduling
based on the assumption that it is the only job running on
the cluster. When an execution record is paired with an
available computer the remote daemon is instructed to run
the specified vertex, and during execution the job manager
receives periodic status updates from the vertex. If every
vertex eventually completes then the job is deemed to have
completed successfully. If any vertex is re-run more than a
set number of times then the entire job is failed.

Files representing temporary channels are stored in di-
rectories managed by the daemon and cleaned up after the
job completes, and vertices are killed by the daemon if their
“parent” job manager crashes. We have a simple graph visu-
alizer suitable for small jobs that shows the state of each ver-
tex and the amount of data transmitted along each channel
as the computation progresses. A web-based interface shows
regularly-updated summary statistics of a running job and
can be used to monitor large computations. The statistics
include the number of vertices that have completed or been
re-executed, the amount of data transferred across channels,
and the error codes reported by failed vertices. Links are
provided from the summary page that allow a developer to
download logs or crash dumps for further debugging, along
with a script that allows the vertex to be re-executed in
isolation on a local machine.

5.1 Fault tolerance policy
Failures are to be expected during the execution of any

distributed application. Our default failure policy is suitable
for the common case that all vertex programs are determin-
istic.1 Because our communication graph is acyclic, it is
relatively straightforward to ensure that every terminating
execution of a job with immutable inputs will compute the

1The definition of job completion and the treatment of job
outputs above also implicitly assume deterministic execu-
tion.
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same result, regardless of the sequence of computer or disk
failures over the course of the execution.

When a vertex execution fails for any reason the job man-
ager is informed. If the vertex reported an error cleanly
the process forwards it via the daemon before exiting; if the
process crashes the daemon notifies the job manager; and if
the daemon fails for any reason the job manager receives a
heartbeat timeout. If the failure was due to a read error on
an input channel (which is be reported cleanly) the default
policy also marks the execution record that generated that
version of the channel as failed and terminates its process
if it is running. This will cause the vertex that created the
failed input channel to be re-executed, and will lead in the
end to the offending channel being re-created. Though a
newly-failed execution record may have non-failed successor
records, errors need not be propagated forwards: since ver-
tices are deterministic two successors may safely compute
using the outputs of different execution versions. Note how-
ever that under this policy an entire connected component
of vertices connected by pipes or shared-memory FIFOs will
fail as a unit since killing a running vertex will cause it to
close its pipes, propagating errors in both directions along
those edges. Any vertex whose execution record is set to
failed is immediately considered for re-execution.

As Section 3.6 explains, each vertex belongs to a “stage,”
and each stage has a manager object that receives a callback
on every state transition of a vertex execution in that stage,
and on a regular timer interrupt. Within this callback the
stage manager holds a global lock on the job manager data-
structures and can therefore implement quite sophisticated
behaviors. For example, the default stage manager includes
heuristics to detect vertices that are running slower than
their peers and schedule duplicate executions. This prevents
a single slow computer from delaying an entire job and is
similar to the backup task mechanism reported in [16]. In
future we may allow non-deterministic vertices, which would
make fault-tolerance more interesting, and so we have imple-
mented our policy via an extensible mechanism that allows
non-standard applications to customize their behavior.

5.2 Run-time graph refinement
We have used the stage-manager callback mechanism to

implement run-time optimization policies that allow us to
scale to very large input sets while conserving scarce network
bandwidth. Some of the large clusters we have access to have
their network provisioned in a two-level hierarchy, with a
dedicated mini-switch serving the computers in each rack,
and the per-rack switches connected via a single large core
switch. Therefore where possible it is valuable to schedule
vertices as much as possible to execute on the same computer
or within the same rack as their input data.

If a computation is associative and commutative, and per-
forms a data reduction, then it can benefit from an aggrega-
tion tree. As shown in Figure 6, a logical graph connecting a
set of inputs to a single downstream vertex can be refined by
inserting a new layer of internal vertices, where each internal
vertex reads data from a subset of the inputs that are close
in network topology, for example on the same computer or
within the same rack. If the internal vertices perform a data
reduction, the overall network traffic between racks will be
reduced by this refinement. A typical application would be a
histogramming operation that takes as input a set of partial
histograms and outputs their union. The implementation in
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Figure 6: A dynamic refinement for aggregation. The logical
graph on the left connects every input to the single output. The lo-
cations and sizes of the inputs are not known until run time when it
is determined which computer each vertex is scheduled on. At this
point the inputs are grouped into subsets that are close in network
topology, and an internal vertex is inserted for each subset to do a
local aggregation, thus saving network bandwidth. The internal ver-
tices are all of the same user-supplied type, in this case shown as
“Z.” In the diagram on the right, vertices with the same label (’+’ or
’*’) are executed close to each other in network topology.

Dryad simply attaches a custom stage manager to the input
layer. As this aggregation manager receives callback notifi-
cations that upstream vertices have completed, it rewrites
the graph with the appropriate refinements.

The operation in Figure 6 can be performed recursively
to generate as many layers of internal vertices as required.
We have also found a “partial aggregation” operation to be
very useful. This refinement is shown in Figure 7; having
grouped the inputs into k sets, the optimizer replicates the
downstream vertex k times to allow all of the sets to be
processed in parallel. Optionally, the partial refinement can
be made to propagate through the graph so that an entire
pipeline of vertices will be replicated k times (this behavior
is not shown in the figure). An example of the application of
this technique is described in the experiments in Section 6.3.
Since the aggregation manager is notified on the completion
of upstream vertices, it has access to the size of the data
written by those vertices as well as its location. A typical
grouping heuristic ensures that a downstream vertex has no
more than a set number of input channels, or a set volume
of input data. A special case of partial refinement can be
performed at startup to size the initial layer of a graph so
that, for example, each vertex processes multiple inputs up
to some threshold with the restriction that all the inputs
must lie on the same computer.

Because input data can be replicated on multiple com-
puters in a cluster, the computer on which a graph vertex
is scheduled is in general non-deterministic. Moreover the
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Figure 7: A partial aggregation refinement. Following an input
grouping as in Figure 6 into k sets, the successor vertex is replicated
k times to process all the sets in parallel.
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amount of data written in intermediate computation stages
is typically not known before a computation begins. There-
fore dynamic refinement is often more efficient than attempt-
ing a static grouping in advance.

Dynamic refinements of this sort emphasize the power of
overlaying a physical graph with its “skeleton.” For many
applications, there is an equivalence class of graphs with the
same skeleton that compute the same result. Varying the
number of vertices in each stage, or their connectivity, while
preserving the graph topology at the stage level, is merely
a (dynamic) performance optimization.

6. EXPERIMENTAL EVALUATION
Dryad has been used for a wide variety of applications, in-

cluding relational queries, large-scale matrix computations,
and many text-processing tasks. For this paper we examined
the effectiveness of the Dryad system in detail by running
two sets of experiments. The first experiment takes the SQL
query described in Section 2.1 and implements it as a Dryad
application. We compare the Dryad performance with that
of a traditional commercial SQL server, and we analyze the
Dryad performance as the job is distributed across different
numbers of computers. The second is a simple map-reduce
style data-mining operation, expressed as a Dryad program
and applied to 10.2 TBytes of data using a cluster of around
1800 computers.

The strategies we adopt to build our communication flow
graphs are familiar from the parallel database literature [18]
and include horizontally partitioning the datasets, exploit-
ing pipelined parallelism within processes and applying ex-
change operations to communicate partial results between
the partitions. None of the application-level code in any of
our experiments makes explicit use of concurrency primi-
tives.

6.1 Hardware
The SQL query experiments were run on a cluster of 10

computers in our own laboratory, and the data-mining tests
were run on a cluster of around 1800 computers embed-
ded in a data center. Our laboratory computers each had 2
dual-core Opteron processors running at 2GHz (i.e., 4 CPUs
total), 8 GBytes of DRAM (half attached to each processor
chip), and 4 disks. The disks were 400 GByte Western Dig-
ital WD40 00YR-01PLB0 SATA drives, connected through
a Silicon Image 3114 PCI SATA controller (66MHz, 32-bit).
Network connectivity was by 1Gbit/sec Ethernet links con-
necting into a single non-blocking switch. One of our labo-
ratory computers was dedicated to running SQLServer and
its data was stored in 4 separate 350 GByte NTFS volumes,
one on each drive, with SQLServer configured to do its own
data striping for the raw data and for its temporary tables.
All the other laboratory computers were configured with a
single 1.4 TByte NTFS volume on each computer, created
by software striping across the 4 drives. The computers in
the data center had a variety of configurations, but were
typically roughly comparable to our laboratory equipment.
All the computers were running Windows Server 2003 En-
terprise x64 edition SP1.

6.2 SQL Query
The query for this experiment is described in Section 2.1

and uses the Dryad communication graph shown in Figure 2.
SQLServer 2005’s execution plan for this query was very

close to the Dryad computation, except that it used an ex-
ternal hash join for “Y” in place of the sort-merge we chose
for Dryad. SQLServer takes slightly longer if it is forced by
a query hint to use a sort-merge join.

For our experiments, we used two variants of the Dryad
graph: “in-memory” and “two-pass.” In both variants com-
munication from each Mi through its corresponding Si to Y
is by a shared-memory FIFO. This pulls four sorters into the
same process to execute in parallel on the four CPUs in each
computer. In the “in-memory” variant only, communication
from each Di to its four corresponding Mj vertices is also by
a shared-memory FIFO and the rest of the Di → Mk edges
use TCP pipes. All other communication is through NTFS
temporary files in both variants.

There is good spatial locality in the query, which improves
as the number of partitions (n) decreases: for n = 40 an
average of 80% of the output of Di goes to its corresponding
Mi, increasing to 88% for n = 6. In either variant n must
be large enough that every sort executed by a vertex Si will
fit into the computer’s 8 GBytes of DRAM (or else it will
page). With the current data, this threshold is at n = 6.

Note that the non-deterministic merge in M randomly
permutes its output depending on the order of arrival of
items on its input channels and this technically violates the
requirement that all vertices be deterministic. This does
not cause problems for our fault-tolerance model because
the sort Si “undoes” this permutation, and since the edge
from Mi to Si is a shared-memory FIFO within a single
process the two vertices fail (if at all) in tandem and the
non-determinism never “escapes.”

The in-memory variant requires at least n computers since
otherwise the S vertices will deadlock waiting for data from
an X vertex. The two-pass variant will run on any num-
ber of computers. One way to view this trade-off is that by
adding the file buffering in the two-pass variant we in ef-
fect converted to using a two-pass external sort. Note that
the conversion from the in-memory to the two-pass program
simply involves changing two lines in the graph construction
code, with no modifications to the vertex programs.

We ran the two-pass variant using n = 40, varying the
number of computers from 1 to 9. We ran the in-memory
variant using n = 6 through n = 9, each time on n com-
puters. As a baseline measurement we ran the query on a
reasonably well optimized SQLServer on one computer. Ta-
ble 2 shows the elapsed times in seconds for each experiment.
On repeated runs the times were consistent to within 3.4% of
their averages except for the single-computer two-pass case,
which was within 9.4%. Figure 8 graphs the inverse of these
times, normalized to show the speed-up factor relative to
the two-pass single-computer case.

The results are pleasantly straightforward. The two-pass
Dryad job works on all cluster sizes, with close to linear
speed-up. The in-memory variant works as expected for

Computers 1 2 3 4 5 6 7 8 9

SQLServer 3780
Two-pass 2370 1260 836 662 523 463 423 346 321
In-memory 217 203 183 168

Table 2: Time in seconds to process an SQL query using differ-
ent numbers of computers. The SQLServer implementation can-
not be distributed across multiple computers and the in-memory ex-
periment can only be run for 6 or more computers.
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Figure 8: The speedup of the SQL query computation is near-
linear in the number of computers used. The baseline is relative
to Dryad running on a single computer and times are given in Table 2.

n = 6 and up, again with close to linear speed-up, and
approximately twice as fast as the two-pass variant. The
SQLServer result matches our expectations: our special-
ized Dryad program runs significantly, but not outrageously,
faster than SQLServer’s general-purpose query engine. We
should note of course that Dryad simply provides an execu-
tion engine while the database provides much more function-
ality, including logging, transactions, and mutable relations.

6.3 Data mining
The data-mining experiment fits the pattern of map then

reduce. The purpose of running this experiment was to ver-
ify that Dryad works sufficiently well in these straightfor-
ward cases, and that it works at large scales.

The computation in this experiment reads query logs gath-
ered by the MSN Search service, extracts the query strings,
and builds a histogram of query frequency. The basic com-
munication graph is shown in Figure 9. The log files are
partitioned and replicated across the computers’ disks. The
P vertices each read their part of the log files using library
newline-delimited text items, and parse them to extract the
query strings. Subsequent items are all library tuples con-
taining a query string, a count, and a hash of the string.
Each D vertex distributes to k outputs based on the query
string hash; S performs an in-memory sort. C accumulates
total counts for each query and MS performs a streaming
merge-sort. S and MS come from a vertex library and take
a comparison function as a parameter; in this example they
sort based on the query hash. We have encapsulated the
simple vertices into subgraphs denoted by diamonds in or-
der to reduce the total number of vertices in the job (and
hence the overhead associated with process start-up) and
the volume of temporary data written to disk.

The graph shown in Figure 9 does not scale well to very
large datasets. It is wasteful to execute a separate Q vertex
for every input partition. Each partition is only around
100 MBytes, and the P vertex performs a substantial data
reduction, so the amount of data which needs to be sorted
by the S vertices is very much less than the total RAM on
a computer. Also, each R subgraph has n inputs, and when
n grows to hundreds of thousands of partitions, it becomes
unwieldy to read in parallel from so many channels.
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Figure 9: The communication graph to compute a query his-
togram. Details are in Section 6.3. This figure shows the first cut
“naive” encapsulated version that doesn’t scale well.

After trying a number of different encapsulation and dy-
namic refinement schemes we arrived at the communication
graphs shown in Figure 10 for our experiment. Each sub-
graph in the first phase now has multiple inputs, grouped
automatically using the refinement in Figure 7 to ensure
they all lie on the same computer. The inputs are sent to
the parser P through a non-deterministic merge vertex M .
The distribution (vertex D) has been taken out of the first
phase to allow another layer of grouping and aggregation
(again using the refinement in Figure 7) before the explo-
sion in the number of output channels.

We ran this experiment on 10,160,519,065,748 Bytes of in-
put data in a cluster of around 1800 computers embedded
in a data center. The input was divided into 99,713 parti-
tions replicated across the computers, and we specified that
the application should use 450 R subgraphs. The first phase
grouped the inputs into at most 1GBytes at a time, all ly-
ing on the same computer, resulting in 10,405 Q′ subgraphs
that wrote a total of 153,703,445,725 Bytes. The outputs
from the Q′ subgraphs were then grouped into sets of at
most 600 MBytes on the same local switch resulting in 217
T subgraphs. Each T was connected to every R subgraph,
and they wrote a total of 118,364,131,628 Bytes. The to-
tal output from the R subgraphs was 33,375,616,713 Bytes,
and the end-to-end computation took 11 minutes and 30
seconds. Though this experiment only uses 11,072 vertices,
intermediate experiments with other graph topologies con-
firmed that Dryad can successfully execute jobs containing
hundreds of thousands of vertices.

We would like to emphasize several points about the op-
timization process we used to arrive at the graphs in Fig-
ure 10:

1. At no point during the optimization did we have to
modify any of the code running inside the vertices:
we were simply manipulating the graph of the job’s
communication flow, changing tens of lines of code.

2. This communication graph is well suited to any map-
reduce computation with similar characteristics: i.e.
that the map phase (our P vertex) performs substan-

68



Q' Q'

R

Q'

R 450

TT 217

450

10,405

99,713

is:Each

R

is:

Each

MS

C

T

is:

Each

MS

D

C

M

P

C

S

Q'

RR 450

T

450

99,713

33.4 GB

118 GB

154 GB

10.2 TB

a b

Figure 10: Rearranging the vertices gives better scaling performance compared with Figure 9. The user supplies graph (a) specifying that
450 buckets should be used when distributing the output, and that each Q′ vertex may receive up to 1GB of input while each T may receive up
to 600MB. The number of Q′ and T vertices is determined at run time based on the number of partitions in the input and the network locations
and output sizes of preceding vertices in the graph, and the refined graph (b) is executed by the system. Details are in Section 6.3.

tial data reduction and the reduce phase (our C vertex)
performs some additional relatively minor data reduc-
tion. A different topology might give better perfor-
mance for a map-reduce task with different behavior;
for example if the reduce phase performed substantial
data reduction a dynamic merge tree as described in
Figure 6 might be more suitable.

3. When scaling up another order of magnitude or two,
we might change the topology again, e.g. by adding
more layers of aggregation between the T and R stages.
Such re-factoring is easy to do.

4. Getting good performance for large-scale data-mining
computations is not trivial. Many novel features of the
Dryad system, including subgraph encapsulation and
dynamic refinement, were used. These made it simple
to experiment with different optimization schemes that
would have been difficult or impossible to implement
using a simpler but less powerful system.

7. BUILDING ON DRYAD
As explained in the introduction, we have targeted Dryad

at developers who are experienced at using high-level com-
piled programming languages. In some domains there may
be great value in making common large-scale data process-
ing tasks easier to perform, since this allows non-developers
to directly query the data store [33]. We designed Dryad to
be usable as a platform on which to develop such more re-
stricted but simpler programming interfaces, and two other
groups within Microsoft have already prototyped systems to
address particular application domains.

7.1 The “Nebula” scripting language
One team has layered a scripting interface on top of Dryad.

It allows a user to specify a computation as a series of stages
(corresponding to the Dryad stages described in Section 3.6),

each taking inputs from one or more previous stages or the
file system. Nebula transforms Dryad into a generalization
of the Unix piping mechanism and it allows programmers to
write giant acyclic graphs spanning many computers. Often
a Nebula script only refers to existing executables such as
perl or grep, allowing a user to write an entire complex dis-
tributed application without compiling any code. The Neb-
ula layer on top of Dryad, together with some perl wrap-
per functions, has proved to be very successful for large-
scale text processing, with a low barrier to entry for users.
Scripts typically run on thousands of computers and contain
5–15 stages including multiple projections, aggregations and
joins, often combining the information from multiple input
sets in sophisticated ways.

Nebula hides most of the details of the Dryad program
from the developer. Stages are connected to preceding stages
using operators that implicitly determine the number of ver-
tices required. For example, a “Filter” operation creates one
new vertex for every vertex in its input list, and connects
them pointwise to form a pipeline. An “Aggregate” opera-
tion can be used to perform exchanges and merges. The im-
plementation of the Nebula operators makes use of dynamic
optimizations like those described in Section 5.2 however
the operator abstraction allows users to remain unaware of
the details of these optimizations. All Nebula vertices exe-
cute the process wrapper described in Section 4.2, and the
vertices in a given stage all run the same executable and
command-line, specified using the script. The Nebula sys-
tem defines conventions for passing the names of the input
and output pipes to the vertex executable command-line.

There is a very popular “front-end” to Nebula that lets
the user describe a job using a combination of: fragments of
perl that parse lines of text from different sources into struc-
tured records; and a relational query over those structured
records expressed in a subset of SQL that includes select,
project and join. This job description is converted into
a Nebula script and executed using Dryad. The perl pars-
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ing fragments for common input sources are all in libraries,
so many jobs using this front-end are completely described
using a few lines of SQL.

7.2 Integration with SSIS
SQL Server Integration Services (SSIS) [6] supports work-

flow-based application programming on a single instance of
SQLServer. The AdCenter team in MSN has developed a
system that embeds local SSIS computations in a larger,
distributed graph with communication, scheduling and fault
tolerance provided by Dryad. The SSIS input graph can be
built and tested on a single computer using the full range
of SQL developer tools. These include a graphical editor for
constructing the job topology, and an integrated debugger.

When the graph is ready to run on a larger cluster the sys-
tem automatically partitions it using heuristics and builds
a Dryad graph that is then executed in a distributed fash-
ion. Each Dryad vertex is an instance of SQLServer running
an SSIS subgraph of the complete job. This system is cur-
rently deployed in a live production system as part of one
of AdCenter’s log processing pipelines.

7.3 Distributed SQL queries
One obvious additional direction would be to adapt a

query optimizer for SQL or LINQ [4] queries to compile
plans directly into a Dryad flow graph using appropriate
parameterized vertices for the relational operations. Since
our fault-tolerance model only requires that inputs be im-
mutable over the duration of the query, any underlying stor-
age system that offers lightweight snapshots would suffice to
allow us to deliver consistent query results. We intend to
pursue this as future work.

8. RELATED WORK
Dryad is related to a broad class of prior literature, rang-

ing from custom hardware to parallel databases, but we be-
lieve that the ensemble of trade-offs we have chosen for its
design, and some of the technologies we have deployed, make
it a unique system.

Hardware Several hardware systems use stream program-
ming models similar to Dryad, including Intel IXP [2],
Imagine [26], and SCORE [15]. Programmers or com-
pilers represent the distributed computation as a col-
lection of independent subroutines residing within a
high-level graph.

Click A similar approach is adopted by the Click modular
router [27]. The technique used to encapsulate multi-
ple Dryad vertices in a single large vertex, described
in section 3.4, is similar to the method used by Click
to group the elements (equivalent of Dryad vertices)
in a single process. However, Click is always single-
threaded, while Dryad encapsulated vertices are de-
signed to take advantage of multiple CPU cores that
may be available.

Dataflow The overall structure of a Dryad application is
closely related to large-grain dataflow techniques used
in e.g. LGDF2 [19], CODE2 [31] and P-RIO [29]. These
systems were not designed to scale to large clusters
of commodity computers, however, and do not toler-
ate machine failures or easily support programming
very large graphs. Paralex [9] has many similarities

to Dryad, but in order to provide automatic fault-
tolerance sacrifices the vertex programming model, al-
lowing only pure-functional programs.

Parallel databases Dryad is heavily indebted to the tra-
ditional parallel database field [18]: e.g., Vulcan [22],
Gamma [17], RDb [11], DB2 parallel edition [12], and
many others. Many techniques for exploiting paral-
lelism, including data partitioning; pipelined and par-
titioned parallelism; and hash-based distribution are
directly derived from this work. We can map the whole
relational algebra on top of Dryad, however Dryad is
not a database engine: it does not include a query
planner or optimizer; the system has no concept of
data schemas or indices; and Dryad does not sup-
port transactions or logs. Dryad gives the program-
mer more control than SQL via C++ programs in ver-
tices and allows programmers to specify encapsulation,
transport mechanisms for edges, and callbacks for ver-
tex stages. Moreover, the graph builder language al-
lows Dryad to express irregular computations.

Continuous Query systems There are some superficial
similarities between CQ systems (e.g. [25, 10, 34]) and
Dryad, such as some operators and the topologies of
the computation networks. However, Dryad is a batch
computation system, not designed to support real-time
operation which is crucial for CQ systems since many
CQ window operators depend on real-time behavior.
Moreover, many datamining Dryad computations re-
quire extremely high throughput (tens of millions of
records per second per node), which is much greater
than that typically seen in the CQ literature.

Explicitly parallel languages like Parallel Haskell [38],
Cilk [14] or NESL [13] have the same emphasis as
Dryad on using the user’s knowledge of the problem to
drive the parallelization. By relying on C++, Dryad
should have a faster learning curve than that for func-
tional languages, while also being able to leverage com-
mercial optimizing compilers. There is some appeal in
these alternative approaches, which present the user
with a uniform programming abstraction rather than
our two-level hierarchy. However, we believe that for
data-parallel applications that are naturally written
using coarse-grain communication patterns, we gain
substantial benefit by letting the programmer cooper-
ate with the system to decide on the granularity of
distribution.

Grid computing [1] and projects such as Condor [37] are
clearly related to Dryad, in that they leverage the re-
sources of many workstations using batch processing.
However, Dryad does not attempt to provide support
for wide-area operation, transparent remote I/O, or
multiple administrative domains. Dryad is optimized
for the case of a very high-throughput LAN, whereas in
Condor bandwidth management is essentially handled
by the user job.

Google MapReduce The Dryad system was primarily de-
signed to support large-scale data-mining over clusters
of thousands of computers. As a result, of the recent
related systems it shares the most similarities with
Google’s MapReduce [16, 33] which addresses a similar
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problem domain. The fundamental difference between
the two systems is that a Dryad application may spec-
ify an arbitrary communication DAG rather than re-
quiring a sequence of map/distribute/sort/reduce op-
erations. In particular, graph vertices may consume
multiple inputs, and generate multiple outputs, of dif-
ferent types. For many applications this simplifies the
mapping from algorithm to implementation, lets us
build on a greater library of basic subroutines, and,
together with the ability to exploit TCP pipes and
shared-memory for data edges, can bring substantial
performance gains. At the same time, our implemen-
tation is general enough to support all the features
described in the MapReduce paper.

Scientific computing Dryad is also related to high-perfor-
mance computing platforms like MPI [5], PVM [35], or
computing on GPUs [36]. However, Dryad focuses on
a model with no shared-memory between vertices, and
uses no synchronization primitives.

NOW The original impetus for employing clusters of work-
stations with a shared-nothing memory model came
from projects like Berkeley NOW [7, 8], or TACC [20].
Dryad borrows some ideas from these systems, such
as fault-tolerance through re-execution and central-
ized resource scheduling, but our system additionally
provides a unified, simple high-level programming lan-
guage layer.

Log datamining Addamark, now renamed SenSage [32]
has successfully commercialized software for log data-
mining on clusters of workstations. Dryad is designed
to scale to much larger implementations, up to thou-
sands of computers.

9. DISCUSSION
With the basic Dryad infrastructure in place, we see a

number of interesting future research directions. One fun-
damental question is the applicability of the programming
model to general large-scale computations beyond text pro-
cessing and relational queries. Of course, not all programs
are easily expressed using a coarse-grain data-parallel com-
munication graph, but we are now well positioned to identify
and evaluate Dryad’s suitability for those that are.

Section 3 assumes an application developer will first con-
struct a static job graph, then pass it to the runtime to be
executed. Section 6.3 shows the benefits of allowing applica-
tions to perform automatic dynamic refinement of the graph.
We plan to extend this idea and also introduce interfaces to
simplify dynamic modifications of the graph according to
application-level control flow decisions. We are particularly
interested in data-dependent optimizations that might pick
entirely different strategies (for example choosing between
in-memory and external sorts) as the job progresses and
the volume of data at intermediate stages becomes known.
Many of these strategies are already described in the paral-
lel database literature, but Dryad gives us a flexible testbed
for exploring them at very large scale. At the same time,
we must ensure that any new optimizations can be targeted
by higher-level languages on top of Dryad, and we plan to
implement comprehensive support for relational queries as
suggested in Section 7.3.

The job manager described in this paper assumes it has
exclusive control of all of the computers in the cluster, and
this makes it difficult to efficiently run more than one job at
a time. We have completed preliminary experiments with
a new implementation that allows multiple jobs to cooper-
ate when executing concurrently. We have found that this
makes much more efficient use of the resources of a large
cluster, but are still exploring variants of the basic design.
A full analysis of our experiments will be presented in a
future publication.

There are many opportunities for improved performance
monitoring and debugging. Each run of a large Dryad job
generates statistics on the resource usage of thousands of ex-
ecutions of the same program on different input data. These
statistics are already used to detect and re-execute slow-
running “outlier” vertices. We plan to keep and analyze the
statistics from a large number of jobs to look for patterns
that can be used to predict the resource needs of vertices
before they are executed. By feeding these predictions to
our scheduler, we may be able to continue to make more
efficient use of a shared cluster.

Much of the simplicity of the Dryad scheduler and fault-
tolerance model come from the assumption that vertices are
deterministic. If an application contains non-deterministic
vertices then we might in future aim for the guarantee that
every terminating execution produces an output that some
failure-free execution could have generated. In the general
case where vertices can produce side-effects this might be
very hard to ensure automatically.

The Dryad system implements a general-purpose data-
parallel execution engine. We have demonstrated excellent
scaling behavior on small clusters, with absolute perfor-
mance superior to a commercial database system for a hand-
coded read-only query. On a larger cluster we have executed
jobs containing hundreds of thousands of vertices, process-
ing many terabytes of input data in minutes, and we can
automatically adapt the computation to exploit network lo-
cality. We let developers easily create large-scale distributed
applications without requiring them to master any concur-
rency techniques beyond being able to draw a graph of the
data dependencies of their algorithms. We sacrifice some
architectural simplicity compared with the MapReduce sys-
tem design, but in exchange we release developers from the
burden of expressing their code as a strict sequence of map,
sort and reduce steps. We also allow the programmer the
freedom to specify the communication transport which, for
suitable tasks, delivers substantial performance gains.
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