
PISCES: A Programmable, Protocol-Independent
Software Switch

Muhammad Shahbaz?, Sean Choi�, Ben Pfaff†, Changhoon Kim‡,
Nick Feamster?, Nick McKeown�, Jennifer Rexford?

?Princeton University �Stanford University †VMware, Inc ‡Barefoot Networks, Inc
http://pisces.cs.princeton.edu

Abstract
Hypervisors use software switches to steer packets to and from
virtual machines (VMs). These switches frequently need up-
grading and customization—to support new protocol headers
or encapsulations for tunneling and overlays, to improve mea-
surement and debugging features, and even to add middlebox-
like functions. Software switches are typically based on a large
body of code, including kernel code, and changing the switch
is a formidable undertaking requiring domain mastery of net-
work protocol design and developing, testing, and maintaining
a large, complex codebase. Changing how a software switch
forwards packets should not require intimate knowledge of its
implementation. Instead, it should be possible to specify how
packets are processed and forwarded in a high-level domain-
specific language (DSL) such as P4, and compiled to run on
a software switch. We present PISCES, a software switch
derived from Open vSwitch (OVS), a hard-wired hypervisor
switch, whose behavior is customized using P4. PISCES is not
hard-wired to specific protocols; this independence makes it
easy to add new features. We also show how the compiler can
analyze the high-level specification to optimize forwarding
performance. Our evaluation shows that PISCES performs
comparably to OVS and that PISCES programs are about 40
times shorter than equivalent changes to OVS source code.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks] Network Architecture and Design;
D.2.8 [Software Engineering] Metrics—Complexity Measures;
Performance Measures
General Terms: Design; Languages; Performance
Keywords: Software-Defined Networks (SDN); Domain-
Specific Languages (DSL); P4; Software Switch; OVS; Pro-
grammable Data Planes; PISCES; Compiler Optimizations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGCOMM’16, August 22–26, 2016, Florianópolis, Brazil.
Copyright 2016 ACM. ISBN 978-1-4503-4193-6/16/08...$15.00
DOI: http://dx.doi.org/10.1145/2934872.2934886

1 Introduction

Software switches, such as Open vSwitch (OVS) [57], play a
key role in modern data centers: with few exceptions, every
packet that passes to or from a virtual machine (VM) passes
through a software switch. In addition, servers greatly out-
number physical switches in this environment. Therefore, a
data center full of servers running hypervisor software also
contains far more software switches than hardware switches.
Likewise, because each hypervisor hosts several VMs, such a
data center has more virtual Ethernet ports than physical ones.

One of the main advantages of a software hypervisor switch
is that it can be upgraded more easily than a hardware switch.
As a result, hypervisor switches support new encapsulation
headers, improved troubleshooting and debugging features,
and middlebox-like functions such as load balancing, address
virtualization, and encryption. In the future, as data center
owners customize and optimize their infrastructure, they will
continue to add features to hypervisor switches.

Each new feature requires customizing the hypervisor
switch, yet making these customizations is more difficult than
it may appear. First, most of the machinery that enables fast
packet forwarding resides in the kernel. Writing kernel code
requires domain expertise that most network operators lack,
and thus introduces a significant barrier for developing and
deploying new features. Recent technologies can acceler-
ate packet forwarding in user space (e.g., DPDK [34] and
Netmap [64]), but these technologies still require significant
software development expertise and intimate familiarity with
a large, intricate, and complex codebase. Furthermore, cus-
tomization requires not only incorporating changes into switch
code, but also maintaining these customizations as the under-
lying software evolves over time, which can require significant
resources.

Changing how a software switch forwards packets should
not require intimate knowledge of how the switch is imple-
mented. Rather, it should be possible to specify custom net-
work protocols in a domain-specific language (DSL) such as
P4 [10], which is then compiled to custom code for the hy-
pervisor switch. Such a DSL would support customizing the
forwarding behavior of the switch, without requiring changes
to the underlying switch implementation. Decoupling custom
protocol implementations from underlying switch code also
makes it easier to maintain these customizations, since they

525

http://pisces.cs.princeton.edu
http://dx.doi.org/10.1145/2934872.2934886

remain independent of the underlying switch implementation.
With a standardized DSL, customizations may also be ported
to other hardware or software switches, that support the same
language.

A key insight, borrowed from a similar trend in hardware
switches [11, 41], is that the underlying switch should be a
substrate, well-tuned to process packets at high speed, but not
tied to a specific protocol. In the extreme, the switch is said
to be “protocol independent,” meaning that before it receives
instructions about how to process packets (via a DSL), it does
not know what a protocol is. Put another way, protocols are
represented by programs written in the DSL, which protocol
authors create.

We apply a similar philosophy to software switches. We
assume the program written in the DSL specifies which packet
headers to parse and the structure of the match-action tables
(i.e., which header fields to match and which actions to per-
form on matching headers). The underlying software substrate
is a generic engine, optimized to parse, match, and act upon
the packet headers in the form the program specifies.

Expressing these customizations in a DSL, however, entails
compilation from the DSL to code that runs in the switch.
Compared to a switch that is handwritten to implement fixed
protocols, this protocol compilation process may reduce the
efficiency of the underlying implementation and thus come
at the cost of performance. The compilation process differs
from hardware switches where, given limited resources, the
objective is to optimize for metrics like area, latency, and
power, while satisfying resource constraints [36]. Our goals in
this paper are to (1) quantify the additional cost that expressing
custom protocols in such a DSL produces; and (2) design and
evaluate domain-specific compiler optimizations that reduce
the performance overhead as much as possible. Ultimately, we
demonstrate that, with the appropriate compiler optimizations,
the performance of a protocol-independent software switch—a
switch that supports custom protocol specification in a high-
level DSL without direct modifications to the low-level source
code—approaches parity with the native hypervisor software
switch. Our results are promising, particularly given that
OVS, our base code, was not designed to support protocol
independence. Nevertheless, our results demonstrate that the
“cost of programmability” in hypervisor switches is negligible.
We expect our results will inspire the design of new protocol-
independent software switches running at even higher speeds.

We make the following contributions:

• The design and implementation of PISCES, the first soft-
ware switch that allows custom protocol specification in
a high-level DSL, without requiring direct modifications
to switch source code (Section 4).

• A public, open-source implementation of PISCES
on GitHub [2]. The implementation is a protocol-
independent software switch derived from OVS that is
programmed from a high-level DSL, called P4.

• Domain-specific optimizations and a back-end optimizer
to reduce the performance overhead of customizing OVS

using P4. We also introduce two new annotations in P4
to aid in the optimizations (Section 4.3).

• An evaluation of the code complexity of PISCES pro-
grams and its forwarding performance (Section 5). Our
evaluation shows that PISCES programs are on average
about 40 times shorter than equivalent changes to OVS
source code and incur a forwarding performance (i.e.,
throughput) overhead of only about 2%.

We begin by motivating the need for a customizable hypervi-
sor software switch with a description of real use cases from
operational networks (Section 2) and present background in-
formation on both P4 and OVS (Section 3).

2 The Need for a Protocol-Independent Switch

We say that PISCES is a protocol-independent software switch
because it does not know what a protocol is or how to process
packets on behalf of a protocol, until the programmer specifies
it. For example, if we want PISCES to process IPv4 packets,
then we need to describe how IPv4 packets are processed in
a P4 program. In a P4 program (e.g., IPv4.p4), we need to
describe the format and fields of the IPv4 header, including the
IP addresses, protocol ID, TTL, checksum, flags, and so forth.
We also need to specify that we use a lookup table to store
IPv4 prefixes, and that we search for the longest matching
prefix. We also need to describe how a TTL is decremented, a
checksum is updated, and so on. The P4 program captures the
entire packet processing pipeline, which is compiled to source
code for OVS that specifies the switch’s match, action, and
parse capabilities.

A protocol-independent switch brings many benefits:

Adding new standard or private protocol headers. Ven-
dors propose new protocol headers all the time, particularly
for data centers. In recent years, VXLAN [47], NVGRE [73],
Geneve [29] have all been standardized, and STT [16] and
NSH [60] are also being discussed as potential standards.
Private, proprietary protocols are also added, to provide a
competitive advantage by, for example, creating better isola-
tion between applications, or by introducing novel congestion
marking. In many cases, before new protocols can be deployed,
all hardware and software switches must be upgraded to rec-
ognize the headers and process them correctly. For hardware
switches, the data center owner must provide requirements
to their chip vendor and wait three to four years for the new
feature to arrive, if the vendor agrees to add the feature at all.
In the case of software switches, they must wait for the next
major revision, testing, and deployment cycle. Even modify-
ing an open-source software switch is not a panacea because
once the data center owner directly modifies the open-source
software switches to add their own custom protocols, these
modifications still need to be maintained and synchronized
with the mainline codebase, introducing significant code main-
tenance overhead as the original open-source switch continues
to evolve. A data-center owner who could add new protocols

526

to a P4 program could, instead, compile and deploy a new
protocol more quickly.

Removing a standard protocol header. Data-center net-
works typically run fewer protocols than legacy campus and
enterprise networks, in part because most of the traffic is
machine-to-machine and many legacy protocols are not needed
(e.g., multicast, RSVP, L2-learning). For example, Amazon
Web Services (AWS) reportedly only forwards packets using
IPv4 headers [55]. It therefore benefits the data-center owner
to remove unused protocols entirely, thus eliminating any con-
cern of interactions with dormant implementations of legacy
protocols. It is bad enough to have to support many proto-
cols; much worse to have to understand interactions with and
implications of protocols that operators do not intend to use.
Therefore, data-center owners frequently want to eliminate
unused protocols from their switches, NICs, and operating
systems. Removing protocols from conventional switches is
difficult; for hardware, it means waiting for new silicon, and
for software switches it means wrestling with a large code-
base to extract a specific protocol. In PISCES, removing an
unused protocol is as simple as removing unused portions of a
protocol specification and recompiling the switch source code.
(Section 5.2.2 shows how this can even improve performance.)

Adding better visibility. As data centers get larger and are
used by more applications, it becomes important to understand
the network’s behavior and operating conditions. Failures can
lead to huge loss in revenue, exacerbated by long debugging
times as the network gets bigger and more complicated. There
is growing interest in making it easier to see what the network
is doing. Improving network visibility might entail supporting
new statistics, generating new probe packets, or adding new
protocols and actions to collect switch state (as is enabled
by in-band network telemetry [42, 43]). Users will want to
see how queues are evolving, latencies are varying, whether
tunnels are correctly terminated, and whether links are still
up. Often, during an emergency, users want to quickly add
visibility features. Having them ready to deploy, or being
able to modify forwarding and monitoring logic quickly may
reduce the time to diagnose and fix a network outage.

Adding entirely new features. If users and network own-
ers can modify the forwarding behavior, they may even add
entirely new features. For example, over time we can ex-
pect switches to take on more complex routing, such as
path-utilization aware routing [4, 40], new congestion con-
trol mechanisms [8, 19, 39], source-controlled routing [58],
new load-balancing algorithms [26], new methods to miti-
gate DDoS [5, 25], and new virtual-to-physical gateway func-
tions [17]. If a network owner can upgrade infrastructure to
achieve greater utilization or more control, then they will know
best how to do it. Given the means to upgrade a program writ-
ten in a DSL like P4 for adding new features to a switch, we
can expect network owners to improve their networks much
more rapidly.

Packet
Parser

Packet
Deparser

Custom
Match-Action

Tables

Ingress Egress

Figure 1: P4 abstract forwarding model.

Packet
Parser

Fast Path

Slow Path

Cache Miss

Cache Hit

Generic
Match-Action

Tables

Ingress EgressMicroflow
Cache

Cache Miss

Actions

Megaflow
Cache

Cache Hit

Figure 2: OVS forwarding model.

3 Background

PISCES is a software switch whose forwarding behavior is
specified using a domain-specific language. PISCES is based
on the Open vSwitch (OVS) [57] software switch and is config-
ured using the P4 domain-specific language [10]. We describe
both P4 and OVS below.s

Domain-Specific Language: P4. P4 is a domain-specific lan-
guage that expresses how the pipeline of a network forwarding
element should process packets using the abstract forwarding
model shown in Figure 1. In this model, each packet first
passes through a programmable parser, which extracts head-
ers. The P4 program specifies the structure of each possible
header as well as a parse graph that expresses ordering and
dependencies. Then, the packet passes through a series of
match-action tables (MATs). The P4 program specifies the
fields that each of these MATs may match and the control flow
among them, as well as the spectrum of permissible actions for
each table. At “runtime” (i.e., while the switch is forwarding
packets), controller software may add, remove, and modify
table entries with particular match-action rules that conform
to the P4 program’s specification. Finally, a deparser writes
the header fields back onto the packet before sending it out the
appropriate port.

We choose P4 because its abstract model of a switch is sim-
ilar to that of OpenFlow, the language built into OVS, which
allows us to make straightforward apples-to-apples compar-
isons of OVS with and without a P4 front end. We considered
other alternative bases, such as Click [44]—used in the Berke-
ley Extensible Software Switch (BESS) [30]—that allow for
richer computation than match-action processing. However,
for our purposes, P4 is sufficient to make the intended com-
parisons. There is merit to having a common way to express
forwarding across all “plumbing” switches in a network, and
have code that is portable from one to another. Therefore,
using the same language makes sense for these experiments.

527

As BESS shows, there are other more extensible applications
for software switches that are outside the scope of our work.

Software Switch: Open vSwitch. Open vSwitch (OVS) is
widely used in data centers as a software switch running inside
the hypervisor. In such an environment, OVS switches packets
among virtual interfaces to VMs and physical interfaces. OVS
implements common protocols such as Ethernet, GRE, and
IPv4, as well as newer protocols found in data centers, such
as the VXLAN Group Based Policy (GBP) extension [67],
Geneve [29], NVGRE [73], and STT [16] for virtual network
overlays.

The Open vSwitch virtual switch has two important pieces,
called the slow path and the fast path (i.e., datapath), as shown
in Figure 2. The slow path is a userspace program; it supplies
most of the intelligence of OVS. The fast path acts as a caching
layer that contains only the code needed to achieve maximum
performance. Notably, the fast path must pass any packet that
results in a cache miss to the slow path to get instructions
for further processing. OVS includes a single, portable slow
path and multiple fast-path implementations for different en-
vironments: one based on a Linux kernel module, another
based on a Windows kernel module, and another based on
Intel DPDK [34] userspace forwarding. The DPDK fast path
yields the highest performance, so we use it for our work; with
additional effort, our work could be extended to the other fast
paths.

As an SDN switch, OVS relies on instructions from a con-
troller to determine its behavior, specifically using the Open-
Flow protocol [50]. OpenFlow specifies behavior in terms of
a collection of match-action tables, each of which contains a
number of entries called flows. In turn, a flow consists of a
match, in terms of packet headers and metadata, actions that
instruct the switch what to do when the match evaluates to true,
and a numerical priority. When a packet arrives at a particular
match-action table, the switch finds a matching flow and ex-
ecutes its actions; if more than one flow matches the packet,
then the flow with the highest priority takes precedence.

A software switch that implements the behavior exactly as
described above cannot achieve high performance, because
OpenFlow packets often pass through several match-action
tables, each of which requires general-purpose packet classifi-
cation. Thus, OVS relies on caches to achieve good forwarding
performance. The primary OVS cache is its megaflow cache,
which is structured much like an OpenFlow [50] table. The
idea behind the megaflow cache is that one could, in theory,
combine all of the match-action tables that a packet visits
while traversing the OpenFlow pipeline into a single table by
computing their cross-product. This is infeasible, however, be-
cause the cross-product of k tables with n1, . . . ,nk rules might
have as many as n1 ×·· ·×nk rules. The megaflow cache func-
tions somewhat like a lazily computed cross-product: when
a packet arrives that does not match any existing megaflow
cache entry, the slow path computes a new entry, which corre-
sponds to one row in the theoretical cross-product, and inserts

Parse ActionMatch

OVS Source Code

Flow Rule
Type Checker

OVS Executable

Runtime Flow RulesP4 Program

P4 Compiler

C Code

Slow Path
Configuration

Match-Action
Rules

Figure 3: The P4-to-OVS Compiler in PISCES.

it into the cache. OVS uses a number of techniques to improve
megaflow cache performance and hit rate [57].

When a packet hits in the megaflow cache, the switch can
process it significantly faster than the round trip from the
fast path to the slow path that a cache miss would require.
As a general-purpose packet classification step, however, a
megaflow cache lookup still has a significant cost. Thus, Open
vSwitch fast-path implementations also include a microflow
cache, a hash table that maps from a packet five-tuple to a
megaflow cache entry. The result of the microflow cache
lookup can only be a hint, because megaflows often match on
more fields than just the five-tuple, so that a microflow cache
entry can at best point to the most likely match. Thus, the fast
path must verify that the megaflow cache entry indeed matches
the packet. If it does match, the lookup cost is just that of the
single hash table lookup. This lookup cost is generally much
cheaper than general packet classification, so it is a significant
optimization for traffic patterns with relatively long, steady
streams of packets. If it does not match, then the packet
continues through the usual megaflow cache lookup process,
skipping the entry that it has already checked.

4 PISCES Prototype

Our PISCES prototype is a modified version of OVS with the
parse, match, and action code replaced by C code generated
by our P4 compiler. The workflow is as follows: First, the pro-
grammer creates a P4 program and uses the PISCES version
of the P4 compiler (Section 4.1) to generate new parse, match,
and action code for OVS. Second, OVS is compiled (using the
regular C compiler) to create a protocol-dependent switch that
processes packets as described in the P4 program. To modify
a protocol, a user modifies the P4 program, which compiles to
a new hypervisor switch binary.

We use OVS as the basis for PISCES because it is widely
used and contains some basic scaffolding for a programmable
switch, thus allowing us to focus only on the parts of the switch
that need to be customized (i.e., parse, match, and action). The
code is well-structured, lending itself to modification, and test
environments already exist. It also allows for apples-to-apples
comparisons: We can compare the number of lines of code in
unmodified OVS to the P4 program for PISCES (Section 5.1),
and we can also compare their performance (Section 5.2).

528

4.1 The P4-to-OVS Compiler in PISCES

P4 compilers have two parts: a front end that turns the P4 code
into a target-independent intermediate representation (IR), and
a back end that maps the IR to the target. In our case, the
back end optimizes CPU time, latency, or other objectives by
manipulating the IR, and then generates C code that replaces
the parsing, match, and action code in OVS, as shown in
Figure 3. The P4-to-OVS compiler outputs C source code that
implements everything needed to compile the corresponding
switch executable. The compilation process also generates
an independent type checking program that the executable
uses to ensure that any runtime configuration directives from
the controller (e.g., insertion of flow rules) conforms to the
protocol specified in the P4 program.

Parse. The C code that replaces the original OVS parser
is created by replacing struct flow, the C structure that
OVS uses to track protocol header fields, to include a member
for each field specified by the P4 program, and generating code
to extract header fields from a packet into struct flow.

Match. OVS uses a general-purpose classifier data structure,
based on tuple-space search [69], to implement matching. To
perform custom matches, we do not need to modify this data
structure or the code that manages it. Rather, the control plane
can simply populate the classifier with new packet header
fields at runtime, thereby automatically making those fields
available for packet matching.

Action. The back end of our compiler supports custom actions
by automatically generating code that we statically compile
into the OVS binary. Custom actions can execute either in the
OVS slow path or the fast path; the compiler determines where
a particular action will run to ensure that the switch performs
the actions efficiently. Certain actions (e.g., set field)
can execute in either component. The programmer can offer
hints to the compiler as to whether slow path or fast path
implementation of an action is most appropriate.

Control flow. In a switch, a packet’s control flow is the
sequence of match-action tables that the packet traverses.
Whereas with P4, control flow must be specified at the pro-
gram’s compile time, in OVS control flow is specified at run-
time, via flow entries, which makes it more flexible. Therefore,
our compiler back end can implement P4 control semantics
without OVS changes.

Optimizing the IR. The compiler back end contains an opti-
mizer to examine and modify the IR, so as to generate high-
performance C code. For example, a P4 program may include
a complete IP checksum, but the optimizer can turn this opera-
tion into an incremental IP checksum to make it faster. The
compiler also performs data-flow analysis on the IR [3], allow-
ing it to coalesce and specialize the C code. The optimizer also
decides when and where in the packet processing pipeline to
edit packet headers. Some hardware switches postpone editing
until the end of the pipeline, whereas software switches typi-
cally edit headers at each stage in the pipeline. If necessary,

the optimizer converts the IR for in-line editing. We describe
the optimizer in more detail in Section 4.3.

As is the case with other P4 compilers [10, 36], the P4-
to-OVS compiler also generates an API for the match-action
tables, and extends the OVS command-line tools to work with
the new fields.

4.2 Modifications to OVS
We need to make three modifications to OVS to enable it
to implement the forwarding behavior described in any P4
program.

Arbitrary encapsulation and decapsulation. OVS does not
support arbitrary encapsulation and decapsulation, which a P4
program might require. Each OVS fast path provides custom
support for various fixed forms of encapsulation. The Linux
kernel fast path and DPDK fast path, for example, each sep-
arately implement GRE [22], VXLAN [47], STT [16], and
other encapsulations. The metadata required to encapsulate
and decapsulate a packet for a tunnel is statically configured.
The switch uses a packet’s ingress port to map it to the ap-
propriate tunnel; on egress, the packet is encapsulated in the
corresponding IP header based on this static tunnel config-
uration. We therefore added two new primitives to OVS,
add header() and remove header(), to perform en-
capsulation and decapsulation, respectively, and perform these
operations in the fast path.

Conditionals based on comparison of header fields. Open-
Flow directly supports only bitwise equality tests against
header fields. Relational tests such as < and > to compare
a k-bit field against a constant can be expressed as at most
k rules that use bitwise equality matches. A relational test
between two k-bit fields, such as x < y, requires k(k+ 1)/2
such rules. To simultaneously test for two such conditions that
individually take n1 and n2 rules, one needs n1 ×n2 rules. P4
directly supports such tests, but implementing them in Open-
Flow this way is too expensive, so we added direct support for
them in OVS as conditional actions, a kind of “if” statement
for OpenFlow actions. For example, our extension allows the
P4 compiler to emit an action of the form “If x < y, go to table
2, otherwise go to table 3.”

General checksum verify/update. An IP router should ver-
ify the checksum at ingress, and recompute it at egress, and
most hardware switches do it this way. A software router
often skips checksum verification on ingress to reduce CPU
cycles. Instead, it just incrementally updates the checksum
if it changes any fields (e.g., the TTL).1 Currently, OVS only
supports incremental checksums, but we want to support other
uses of checksums in the way the programmer intended. We
therefore added incremental checksum optimization, described
in Section 4.3. Whether this optimization is valid depends on
whether the P4 switch is acting as a forwarding element or
an end host for a given packet—if it is an end host, then it

1If the checksum was incorrect before the update, it is still incorrect
afterward, and we rely on the ultimate end host to discard the packet.

529

Optimization CPU Cycles Slow-Path Trips
Inline- vs. post-pipeline editing X
Incremental checksum X
Parser specialization X
Action specialization X
Action coalescing X
Cached field modifications X X
Stage assignment X X

Table 1: Back-end optimizations and how they improve performance.

must verify the checksum—so it requires annotation by the P4
programmer.

4.3 The Compiler’s Back-end Optimizer

Two aspects of a software switch ultimately affect forwarding
performance: (1) the per-packet cost for fast-path processing
(adding 100 cycles to this cost reduces the switch’s throughput
by about 500 Mbps), and (2) the number of packets sent to the
slow path, which takes 50+ times as many cycles as the fast
path to process a packet. Table 1 lists the optimizations that
we have implemented, as well as whether the optimization
reduces trips to the slow path, fast path CPU cycles, or both.
The rest of the section details these optimizations.

Inline editing vs. post-pipeline editing. The OVS fast path
performs inline editing, applying packet modifications imme-
diately (the slow path does some simple optimization to avoid
redundant or unnecessary modifications). If many header
fields are modified, removed or inserted, it can become costly
to move and resize packet data on the fly. Instead, it can be
more efficient to delay editing until the headers have been
processed (as hardware switches typically do). The optimizer
analyzes the IR to determine how many times a packet may
need to be modified in the pipeline. If the value is below a
certain threshold, then the optimizer performs inline editing;
otherwise, it performs post-pipeline editing. We allow the pro-
grammer to override this heuristic using a pragma directive.

Incremental checksum. By expressing a checksum operation
in terms of a high-level program description such as P4, a pro-
grammer can provide a compiler with the necessary contextual
information to implement the checksum more efficiently. For
example, the programmer can inform the compiler via anno-
tations that the checksum for each packet can be computed
incrementally [51]; the optimizer can then perform data-flow
analysis to determine which packet header fields change, thus
making re-computation of the checksum more efficient.

Parser specialization. Protocol-independent software
switches can optimize the implementation of the packet parser,
since a customized packet processing pipeline (as specified
in a high-level language such as P4) provides specific infor-
mation about which fields in the packet are modified or used
as the basis for forwarding decisions. For example, a layer-
2 switch that does not make forwarding decisions based on
information at other layers can avoid parsing packet header
fields at those layers. Specifying the forwarding behavior in a

high-level language provides the compiler with information
that it can use to optimize the parser.
Action specialization. The inline editing actions in the OVS
fast path group together related fields that are often set at the
same time. For example, OVS implements a single fast path
action that sets the IPv4 source, destination, type of service,
and TTL value. This is efficient when more than one of these
fields is to be updated at the same time, with little marginal
cost if only one is updated. IPv4 has many other fields, but the
fast path cannot set any of them.

The design of this aspect of OVS required domain expertise:
its designers knew which fields were important for the fast path
to be able to change. A P4 compiler does not have this kind of
expert knowledge of which fields to group together, yielding
a possible cost for grouping too few or too many fields into a
single action. Fortunately, the high-level P4 description of the
match-action control flow allows the optimizer to identify and
eliminate redundant checks in the fast-path set actions, using
optimizations like dead-code elimination [3]. This way, the
optimizer only checks those fields in the set actions that will
actually be set in the match-action control flow.
Action coalescing. By analyzing the control flow and match-
action processing in the P4 program, the compiler can discover
which fields are actually modified and can generate an efficient,
single action to directly update those fields. Thus, if a rule
modifies two fields, the optimizer only installs one action in
OVS.
Cached field modifications. Network protocol data planes
rarely require arithmetic operations on header fields. TTL
decrement operations are the most obvious counterexample;
checksums, already addressed above, are another. Thus, OVS
fast paths do not include general-purpose arithmetic operations.
In fact, they do not include a special-purpose TTL decrement
operation either. Instead, to implement the special-purpose
OpenFlow action to decrement a TTL, the slow path relies on
the fact that most packets from a given source have the same
TTL. Therefore, it emits a cache entry that matches on the
TTL value observed in the packet that it is forwarding and
overwrites this value with one less than that observed value, an
approach we call “match-and-set.” For TTL decrement, this
solution is acceptable because the OVS designers know that
caching this way yields a high hit rate in practice.2

Match-and-set is not always appropriate. As a straw man,
consider update of the IPv4 or IPv6 checksum given a change
in some other IP field. With a match-and-set approach, the
cache entry would have to match on every field that contributes
to the checksum, that is, every IP field, which would reduce
the cache entry’s hit rate nearly to zero. The same can be
true for simpler arithmetic operations that P4 supports, such
as incrementing or decrementing a field value, and in the
end PISCES has no way to know whether match-and-set is
appropriate in a given case.

2In addition, real-world uses of TTL decrement are always paired with
a “TTL exceeded” check that would itself cause the cache entry to match on
TTL, which would negate the value of a special-case TTL decrement action.

530

The solution that PISCES takes is to avoid match-and-set
when it can, by automatically generating fast path operations
to implement the particular arithmetic operations that a P4
program requires. For example, if the program increments
a particular field, PISCES generates a fast path operation to
increment that field. This is effective when the P4 program
executes the arithmetic operation “blindly,” without otherwise
matching on the modified field’s value. If the program does
match on it, then, following the usual rules for caching, the
cache entry must match on the field, so that a match-and-set
approach is necessary.

Stage assignment. OVS implements staged lookup [57] to
reduce the number of trips to the slow path. Staged lookup
divides fields into a ordered list of groups, called stages. The
stages are cumulative, so that each stage after the first contains
all of the fields from the previous stages plus additional fields.
The final stage contains every field. OVS implements each
stage as a separate hash table in its tuple space search classifier.
A classifier lookup searches each of these stages in order. If
any search yields no match, the overall search terminates and
only the fields included in the last stage must be matched in
the cache entry.

OVS uses four such stages: the first stage is metadata fields
(such as the packet’s ingress port), the second is metadata
and layer-2 fields, the third adds layer-3 fields, and the fourth
includes all fields (i.e., metadata, layer 2, 3, and 4). This order
is based on the principle that stages are most effective when
their order corresponds to increasing order of entropy in the
observed values of fields for networks [66]. In the common
case, for example, a cache entry that matches on metadata
only is likely to have a higher hit rate than a cache entry that
matches only on layer-4 fields, so metadata first appears in an
earlier stage (the first stage) than do layer-4 fields (the final
stage).

Staged lookup generalizes to arbitrary P4 programs. This
ordering cannot be inferred from the P4 program, so PISCES
needs assistance to choose appropriate stages. We augmented
the P4 language to enable a user to annotate each header with a
stage number. The number of stages is the same as the number
of headers.

5 Evaluation
We compare the complexity and performance of a PISCES
virtual software switch with equivalent OVS native packet pro-
cessing. We compare the resulting programs along two dimen-
sions: (1) complexity, including development and deployment
complexity as well as maintainability; (2) performance, by
comparing packet-forwarding performance of PISCES to the
same native OVS functionality.

5.1 Complexity
Complexity indicates the ease with which a program may
be modified to fix defects, meet new requirements, simplify
future maintenance, or cope with changes in the software en-
vironment. We evaluate two categories of complexity: (1) de-

LoC Methods Method Size

OVS 14,535 106 137.13
PISCES 341 40 8.53

Table 2: Native OVS compared to equivalent baseline functionality
implemented in PISCES.

Files Lines
Changed Changed

Connection Label:
OVS [70, 71] 36 633
PISCES 1 5

Tunnel OAM Flag:
OVS [27, 28] 21 199
PISCES 1 6

TCP Flags:
OVS [61] 20 370
PISCES 1 4

Table 3: The number of files and lines we needed to change to imple-
ment various functionality in P4, compiled with PISCES, compared
to adding the same functionality to native OVS.

velopment complexity of developing baseline features for a
software switch; and (2) change complexity of maintaining an
existing software switch.

5.1.1 Development complexity

We evaluate development complexity with three different met-
rics: lines of code, method count, and average method size.
We count lines of code simply by counting line break charac-
ters and the number of methods by counting the number of
subroutines in each program, as measured using ctags [33].
Finally, we divide lines of code by number of methods to ar-
rive at the average method size. A high average might indicate
that (some) methods are too verbose or complex.

Writing a compiler is a one-time cost. Whereas developers
update their P4 programs frequently, the compiler is changed
much less often—usually when the P4 language specification
changes. For PISCES, we write about 1,000 lines of code for
compiling P4 to C code, and an extra 1,700 lines of code to
extend the native OVS to incorporate the generated C code.
ovs.p4 [1] contains the representation of the headers,

parsers, and actions that are currently supported in OVS. Much
of the code in OVS is out of the scope of P4, so our measure-
ments include only the files that are responsible for protocol
definitions and header parsing. Table 2 summarizes each of
these metrics for the native OVS header fields and parser
implementation, and the equivalent logic in P4.3 PISCES re-
duces the lines of code by about a factor of 40 and the average
method size by about a factor of 20.

5.1.2 Change complexity

To evaluate the complexity of maintaining a protocol-
independent software switch in PISCES, we compare the effort
required to add support for a new header field in a protocol
that is otherwise already supported, in OVS and in P4. Ta-

3We reuse the same code for the match-action tables in both implementa-
tions because this logic generalizes for both OVS and a protocol-independent
switch such as PISCES.

531

PISCES	Switch	

DPDK	
MoonGen	
Traffic		

Source/Sink	

MoonGen	
Traffic		

Source/Sink	

3x	10G	 3x	10G	

Figure 4: Topology of our evaluation platform.

ble 3 shows our analysis of changes to add support for three
fields: (1) connection label, a 128-bit custom metadata to the
connection tracking interface; (2) tunnel OAM flag, which
many networking tools use to distinguish test packets from
real traffic; and (3) TCP flags, a modification that adds support
for parsing all of the TCP flags. Table 3 shows the changes to
OVS based on the public Open vSwitch commits. These num-
bers are conservative because they include only the changes
to one of the three OVS fast-path implementations.

The results demonstrate that modifying just a few lines of
code in a single P4 file is sufficient to support a new field,
whereas in OVS, the corresponding change often requires
hundreds of lines of changes over tens of files. Among other
changes, one must add the field to struct flow, describe
properties of the field in a global table, implement a parser for
the field in the slow path, and separately implement a parser
in one or more of the fast paths.

5.2 Forwarding Performance
In this section, we compare OVS and PISCES packet-
forwarding performance.

5.2.1 Experiment setup and evaluation metrics

Figure 4 shows the topology of the setup for evaluating the
forwarding performance of PISCES. We use three PowerEdge
R730xd servers with two 8-core, 16-thread Intel Xeon E5-
2640 v3 2.6GHz CPUs running the Proxmox Virtual Environ-
ment [59], an open-source server virtualization platform that
uses virtual switches to connect VMs, with Proxmox Kernel
version 4.2.6-1-pve. Each of our machines is equipped with
one dual-port and one quad-port Intel X710 10 Gbps NIC.
We configure two such machines with MoonGen [20] to send
minimum-size 64-byte frames at 14.88 million packets per
second (Mpps) full line rate on three of the 10 Gbps inter-
faces [64], leaving the other interfaces unused. We connect
these six interfaces to a third machine, the device under test,
sending a total of 60 Gbps of traffic for PISCES to forward.

We consider throughput and packets-per-second to compare
the forwarding performance of PISCES and OVS, using the
MoonGen packet generator to generate test traffic for our ex-
periments. We configure PISCES and OVS with six Poll Mode
Driver (PMD) threads—one for each 10 Gbps interface—in
a Run-to-Completion (RTC) model [35]. Each thread runs
on a separate CPU core attached to one of the Non-Uniform
Memory Access (NUMA) [45] nodes on the machine. To
further understand performance bottlenecks, we use the ma-
chine’s time-stamp counter (TSC) to measure the number of
CPU cycles used by various packet processing operations (i.e.,
parser, megaflow cache lookup, and actions). When reporting

0
10
20
30
40
50
60
70

64 128 192 256

T
hr

ou
gh

pu
t (

M
pp

s)

Packet Size (Bytes)

With MicroFlow Cache Without MicroFlow Cache

(a) Forwarding performance in millions of packets per second with a
standard deviation of less than 0.035 Mpps for all data points.

0
10
20
30
40
50
60
70

64 128 192 256

T
hr

ou
gh

tp
ut

 (G
bp

s)

Packet Size (Bytes)

With MicroFlow Cache Without MicroFlow Cache

(b) Forwarding performance in gigabits per second with a standard
deviation of less than 0.026 Gbps for all data points.

Figure 5: Forwarding performance for OVS with and without the
microflow cache enabled, for input traffic of 60 Gbps across all six
ports and one flow rule per port.

CPU cycles, we report the average CPU cycles per packet over
all packets forwarded in an experiment run; each run lasts for
30 seconds and has an ingress rate of 89.28 Mpps.
Calibrating OVS to enable performance comparison. To
more accurately measure the cost of parsing for both OVS
and PISCES in subsequent experiments, we begin by estab-
lishing a baseline for OVS performance with minimal parsing
functionality. To minimize the cost of parsing, we disable
the parser, which ordinarily parses a comprehensive fixed set
of headers, so that it reports only the input port. After this
change, we send test traffic through the switch with a trivial
flow table that matches every packet that ingresses on port 1
and sends it to port 2.

We measured the performance of this modified OVS. Fig-
ures 5a and 5b show the maximum throughput that our setup
achieves with OVS, with and without the microflow cache, for
60-Gbps traffic. For 64-byte packets, disabling the microflow
cache reduces performance by about 35%, because a lookup
in the OVS megaflow cache consumes five times as many cy-
cles as the microflow cache (Table 4). For small packets, the
OVS switch is CPU-bound on lookups; thus, in this operating
regime, the benefit of the microflow cache is clear.

With this calibration in mind, for the remainder of this sec-
tion, we use the forwarding performance for OVS with the
microflow cache disabled as the basis for our performance
comparison to PISCES. We disable the microflow cache be-
cause it relies on matching a hash of a packet’s five-tuple,
which most NICs can compute directly in hardware. Although

532

Switch With Without
Components MicroFlow MicroFlow

Parser 19.0 18.9
MicroFlow Cache 18.9 —
MegaFlow Cache — 92.2
Slow Path — —
Fast-Path Actions 39.9 38.8

End-to-End 100.6 166.0

Table 4: Average number of cycles per packet consumed by each
element in the virtual switch when processing a 64-byte packet.

0

10

20

30

40

50

64 128 192 256

T
hr

ou
gh

pu
t (

G
bp

s)

Packet Size (Bytes)

PISCES PISCES (Optimized) OVS

Figure 6: Throughput comparison of L2L3-ACL benchmark appli-
cation between OVS and PISCES in gigabits per second, with a
standard deviation of less than 0.023 Gbps for all data points.

OVS’s microflow cache significantly improves its forwarding
performance, this feature relies on protocol-dependent features
(specifically, that the packet has a five-tuple in the first place).
Because our goal is to evaluate forwarding rates for protocol-
independent switches, we disabled OVS’s microflow cache
so that we could compare PISCES, a protocol-independent
switch, with a version of OVS that has no protocol-dependent
optimizations. Comparing PISCES performance to that of
OVS with microflow caching disabled thus offers a more
apples-to-apples performance comparison, although it makes
it difficult to interpret performance versus “real-life Open
vSwitch.” We expect that implementing a microflow cache in
PISCES, by adding P4 annotations for the fields to be hashed
and then hashing them in software, would recover most of the
performance.

5.2.2 End-to-end performance

We next measure the forwarding performance of a real-world
network application for both OVS and PISCES. This eval-
uation provides a clear illustration of the end-to-end perfor-
mance costs of programmability. We select a realistic and
relatively complex application where both switch implemen-
tations provide all packet processing features to provide a
fair performance comparison of PISCES in realistic network
settings.

Figure 7 shows this application, which we call “L2L3-ACL.”
It performs the following operations:

• Parse Ethernet, VLAN, IP, TCP and UDP protocols.
• Perform VLAN encapsulation and decapsulation.

• Perform control-flow and match-action operations ac-
cording to Figure 7 to implement an access control list
(ACL).

• Set Ethernet source, destination, type and VLAN fields.
• Decrement IP’s TTL value.
• Update IP checksum.

Table 5 shows the forwarding performance results for this ap-
plication. The most important rows are the last two, which
show a “bottom line” comparison between OVS and PISCES,
after we apply all compiler optimizations. These results show
that both the average number of CPU cycles per packet and the
average throughput for PISCES with all compiler optimiza-
tions is comparable to OVS with microflow caching disabled:
both require just over an average of 400 CPU cycles per packet,
and both achieve throughput of just over 13 Gbps—a perfor-
mance overhead of less than 2%. Figure 6 demonstrates that
this result also holds for larger packet sizes. In all cases,
PISCES with compiler optimizations enabled in its compiler
achieves performance comparable to OVS.

Next, we discuss in more detail the performance benefits
that each compiler optimization achieves for this end-to-end
application.
Individual compiler optimizations. P4 supports post-
pipeline editing, so we start by compiling L2L3-ACL with
post-pipeline editing. PISCES requires an average of 737 cy-
cles to process a 64-byte packet. Packet parsing and fast-path
actions are primarily responsible for these additional CPU cy-
cles. As our microbenchmarks demonstrate (Section 5.2.3), if
the number of adjustments to packets are less than eight, using
inline-editing mode provides better forwarding performance.
Based on that insight, the PISCES version of the P4 compiler
uses inline editing, which reduces the number of cycles con-
sumed by the parser by about 56%. However, fast-path actions’
cycles slightly increased (still 255 cycles more than OVS).

Next, we introduce incremental checksum updates to reduce
the number of cycles consumed by the fast-path actions. The
only IP field that is modified is TTL, but the full checksum
verify and update design supported by P4 abstract model runs
the checksum over entire headers once at the ingress and once
at egress. For our P4 program, we specify that we want to
use incremental checksum. Using this knowledge, instead of
recalculating checksum on all header fields, using data-flow
analysis on the P4 program (MAT and control-flow), the P4
compiler determines that the pipeline modifies only the TTL
and adjusts the checksum using only that field, which reduces
the number of cycles consumed by the fast-path actions by
59.7%, a significant improvement. However, PISCES still
consumes 23.24 more cycles than OVS.

To further improve the performance we apply action special-
ization and coalescing, and parser specialization (Section 4.3).
This brings the number of cycles consumed per packet by
PISCES to 425.82.
Parser specialization. A protocol-independent switch only
needs to parse the packet-header fields for the protocols de-
fined by the programmer. The compiler in PISCES can op-

533

Switch Optimization Parser MegaFlow Fast-Path End-to-End Throughput
Cache Actions (Avg.) (Mbps)

PISCES Baseline 76.5 209.5 379.5 737.4 7590.7
Inline Editing -42.6 — +7.5 -45.4 +281.0
Inc. Checksum — — -231.3 -234.5 +4685.3
Action Specialization — — -10.3 -9.2 +191.2
Parser Specialization -4.6 — — -7.6 +282.3
Action Coalescing — — -14.6 -14.8 +293.0

All optimizations 29.7 209.0 147.6 425.8 13323.7

OVS — 43.6 197.5 132.5 408.7 13497.5

Table 5: Improvement in average number of cycles per packet, consumed by each element in the virtual switch when processing 64-byte packet,
for L2L3-ACL benchmark application. (Most listed optimizations for the PISCES version of the P4 compiler do not have any counterpart in
OVS, but OVS does implement incremental checksums.)

VLAN	Ingress	
Processing	

Match:	ingress_port	
							vlan.vid	
Action:	add_vlan	
								no_op	

MAC	
Learning	

Match:	eth.src	
Action:	learn	
								no_op	

Switching	

Match:	eth.dst	
							vlan.vid	
Action:	forward	
								bcast	

Routing	

Match:	ip.dst	
Action:	nexthop	
								drop	

Routable	

Match:	eth.src	
							eth.dst	
							vlan.vid	
Action:	no_op	

ACL	

Match:	ip.src,ip.dst	
							ip.prtcl,	
							port.src,port.dst	
Action:	no_op	
								drop	

VLAN	Egress	
Processing	

Match:	egress_port	
							vlan.vid	
Action:	remove_vlan	
								no_op	

route	

Figure 7: Control flow of L2L3-ACL benchmark application. Each of these tables contains a list of fields to match on and a set of actions to
choose from when installing a flow rule. For example, in VLAN Ingress Processing, one can match on ingress port and VLAN id, and can
perform add vlan or no op actions.

timize the parser further to only parse the header fields that
the switch needs to process the packet. To evaluate the poten-
tial benefits of this specialization, we repeat our end-to-end
performance evaluation using two subsets of the L2L3-ACL
program: the “L2L3” program, which does not perform the
ACL functions, and the “L2” program, which manipulates the
Ethernet and VLAN headers and performs VLAN encapsula-
tion, but which does not parse any IP headers or decrement
the TTL (and thus does not update the IP checksum). In terms
of the control flow from the original “L2L3-ACL” benchmark
program from Figure 7, the “L2L3” program removes the dark
grey ACL tables, and the “L2” program additionally removes
the light grey Routable and Routing tables.

Table 6 compares the forwarding performance of OVS and
PISCES for these two programs. For L2L3, PISCES consumes
four more cycles per packet than OVS. However, PISCES has
faster parsing: compared to L2L3-ACL, parsing in L2L3 is
about seven cycles per packet cheaper. OVS uses a fixed parser,
so its cost remains constant. Parser specialization removes
redundant parsing of fields from the parser that are not used
in the control-flow (i.e., TCP and UDP headers). Because
OVS does not know the control-flow and MAT structure a
priori, its parser cannot achieve the same specialization. In the
case of the L2 application, the parser could specialize further,
since it needs only to parse Ethernet headers. In this case,
PISCES can actually process packets more quickly than the
protocol-dependent switch.

5.2.3 Microbenchmarks

We now evaluate the performance of individual components
of PISCES. We focus on the parser and actions, which are
applied on every incoming packet and have the largest effect on
performance. We now benchmark how increasing complexity
in both parser and actions affect the overall performance of
PISCES.

Parser performance. Figure 8a shows how per-packet cycle
counts increase as the P4 program parses additional protocols,
for both post- and inline-editing modes. To parse only the
Ethernet header, the parser consumes about 20 cycles, in ei-
ther mode. As we introduce new protocols, the cycle count
increases, more rapidly for post-pipeline editing, for which
the switch creates an extra copy of the protocol headers for
fast-path actions. For the largest protocol combination in Fig-
ure 8a, the parser requires about 133 cycles (almost six times
as many cycles as simply processing an Ethernet frame) for
post-pipeline editing and 54 cycles for inline-editing. Fig-
ure 8b shows how the throughput decreases with the addition
of each new protocol in the parser. For input traffic at 60 Gbps,
switching throughput decreases about 35%, from 51.1 Gbps
to 33.2 Gbps, for post-pipeline editing and about 24%, from
52.4 Gbps to 40.0 Gbps, for inline editing.

Fast-path action performance. Performance-wise, the dom-
inant action in a virtual switch is the set-field (or modify-field)
action or, in other words, a write action. Figure 9 shows the
per-packet cost, in cycles, as we increase the number of set-

534

Switch Programs Optimizations Parser MegaFlow Fast-Path End-to-End Throughput
Cache Actions (Avg.) (Mbps)

PISCES L2L3 Optimized 22.9 188.4 130.5 392.3 14159.1
OVS L2L3 — 43.6 176.0 131.8 388.3 14152.2

PISCES L2 Optimized 19.7 148.2 90.9 305.7 18118.5
OVS L2 — 43.6 155.2 78.7 312.1 17131.3

Table 6: Improvement in average number of cycles per packet, consumed by each element in the virtual switch when processing 64-byte packet,
for L2L3 and L2 benchmark applications.

0
20
40
60
80

100
120
140

Eth +IP +UDP +VXLAN +Eth+IP
+ICMP

C
PU

 C
yc

les
 p

er
 P

ac
ke

t

Protocol Combinations

Post-Pipeline Editing Inline Editing

(a) CPU cycles.

0

10

20

30

40

50

60

Eth +IP +UDP +VXLAN +Eth+IP
+ICMP

T
hr

ou
gh

pu
t (

G
bp

s)

Protocol Combinations

Post-Pipeline Editing Inline Editing

(b) End-to-end throughput with a standard deviation of less than
0.063 Gbps for all data points.

Figure 8: Effect on parser CPU cycles and end-to-end throughput
as more protocols are added to the parser.

field actions in the fast path for both post- and inline-editing
modes. In post-editing mode, we apply our changes to a copy
of the header fields (extracted from the packet) and at the
end of the pipeline execute a “deparse” action that writes the
changes back to the packet. The “deparse” bar shows how
deparsing consumes about 99 cycles even if no fields are mod-
ified, whereas inline editing has no cost in this case. As the
number of writes increases, the performance difference be-
tween the two modes narrows. For 16 writes, this difference is
20 cycles less than for a single write. Still, in both cases, the
number of cycles increases. For post-editing case, 16 writes
consumes 354 cycles, about 3.6 times that of a single write;
for inline editing, 16 writes consumes 319 cycles, or about 5.6
times more cycles than a single write.

We also measured cycles-per-packet for adding or removing
headers. Figures 10 and 11 show cycles-per-packet for an
increasing number of add-header and remove-header actions,
respectively, in the post-pipeline and inline-editing modes.

0
50

100
150
200
250
300
350
400

Deparse x1 x2 x4 x8 x16

C
PU

 C
yc

le
s p

er
 P

ac
ke

t

Number of Set-Field Actions

Post-Pipeline Editing Inline Editing

Figure 9: Fast Path Set-Field Action Performance.

For the add-header action, for inline-editing mode, the num-
ber of cycles doubles for every new action. This is because
these actions are applied directly on the packet, adjusting the
packet size each time. In contrast, post-pipeline editing adjusts
the packet size only once, in the “deparse” action, so that the
number of cycles consumed remains almost constant. For a
single add-header action, post-editing cost is higher, but for
four or more actions the inline-editing mode is more costly.
For 16 add-header actions, inline editing consumes 577 more
cycles per packet than post-pipeline editing.

We observe a similar trend for remove-header action. There
is one additional wrinkle: as the number of remove-header
actions increases, the cost of post-pipeline editing actually
decreases slightly, because fewer bytes need to be adjusted in
the packet as the packet shrinks. As we increase the number of
remove-header actions from 1 to 16, the per-packet cycle count
decreases by about 21%. This led us to the following rule of
thumb: for fewer than 8 packet-size adjustments (i.e., add-
and remove-header actions), the compiler uses inline-editing;
otherwise, it applies post-pipeline editing, as the added number
of cycles required by the parser to generate a copy of the parsed
packet headers is offset by the number of cycles required by
the add/remove header actions in the inline-editing mode.
Slow-path forwarding performance. When OVS must send
all packets to the slow path, it takes on average about 3,500 cy-
cles to process a single packet (about 50 times the cycles
incurred for a microflow cache hit). In this case, the maximum
packet forwarding rate is about 0.66 Mpps regardless of packet
size. This per-packet cycle count for slow-path processing was
for the simplest possible program that sends every packet to
the same output port. Most real packet processing programs
would require significantly more cycles. For example, for the
L2L3-ACL program, slow-path processing required anywhere
from 30,000 to 60,000 CPU cycles per packet. These perfor-

535

0
100
200
300
400
500
600
700
800

Deparse x1 x2 x4 x8 x16

C
PU

 C
yc

le
s p

er
 P

ac
ke

t

Number of Add-Header Actions

Post-Pipeline Editing Inline Editing

Figure 10: Fast Path Add-Header Performance.

0
100
200
300
400
500
600
700
800

Deparse x1 x2 x4 x8 x16

C
PU

 C
yc

le
s p

er
 P

ac
ke

t

Number of Remove-Header Actions

Post-Pipeline Editing Inline Editing

Figure 11: Fast Path Remove-Header Performance.

mance numbers indicate the importance of the megaflow cache
optimizations that we described in Section 4.3 to reduce the
number of trips to the slow path. Clearly, the number of trips
to the slow path depends on the actual traffic mix (because this
affects cache hit rates in the megaflow cache), so it is difficult
to state general results about the benefits of these optimiza-
tions, but computing the slowdown as a result of cache misses
is straightforward.

Control flow. Control flow in OVS, and thus in PISCES, is
implemented in the slow path. It has a small one-time cost,
which is impossible to separate from slow path performance
in general, at the setup of every new flow.

6 Related Work
PISCES protocols and packet-processing functions can be
specified using a high-level domain-specific language for
packet processing. Although PISCES uses P4 as its high-
level language and OVS as its software switch, previous work
has developed both domain-specific languages for packet pro-
cessing and virtual software switches, where our approaches
for achieving protocol independence and efficient compilation
from a DSL to a software switch may also apply.

Domain-specific languages for packet processing. The
P4 language provided the main framework for protocol
independence[10]; PISCES realizes protocol independence
in a real software switch. P4 itself borrows concepts from
prior work [7, 23, 48]; as such, it may be possible to ap-
ply similar concepts that we have implemented in PISCES
to other high-level languages. Although PISCES compiles
P4 to OVS source code, the concepts and optimizations that

we have developed could apply to other high-level languages
and target switches; an intermediate representation such as
NetASM [65] could ultimately provide a mechanism for a
compiler to apply optimizations for a variety of languages and
targets. Languages such as Pyretic [62] and Frenetic [24] are
domain-specific languages that specify how packets should be
processed by a fixed-function OpenFlow switch. They would
require significant adaptation to take advantage of the abilities
of a programmable switch. Also, compiling packet programs
to reconfigurable hardware switches [36] and FPGAs [12, 63]
differs from compiling to software switches. For hardware
switches, the focus is on constrained optimization problems
where, given a relatively small chip or memory footprint, the
goal is to use that space optimally while satisfying dependen-
cies. Such an approach is not likely to be effective for software
switches, which do not have the same kinds of constraints.
Virtual software switches. Existing methods and frame-
works for building software switches like Linux Kernel [46],
DPDK [34], Netmap [64], Click [44], and BPF [14, 15, 49]
require intimate knowledge about the underlying implementa-
tion and, thus, make it difficult for a network programmer to
rapidly adapt and add new features to these virtual switches.
PISCES, on the other hand, allows programmer to specify
packet processing behavior independent of the underlying
implementation details. Open vSwitch (OVS) [57] provides
interfaces for populating its match-action tables but does not
provide mechanisms to customize protocols and actions.
Other programmable switches. Software routers such as
RouteBricks [18], PacketShader [31], and GSwitch [72] rely
on general-purpose processors or GPUs to process packets;
these designs generally focus on optimizing server, network
interface, and processor scheduling to improve the perfor-
mance of the software switch. These switches do not enable
programmability through a high-level domain-specific lan-
guage such as P4, and they also do not function as hypervisor
switches. CuckooSwitch [74] can be used as a hypervisor
switch. However, it focuses on providing fast forwarding ta-
ble lookups by using highly-concurrent hash tables based on
Cuckoo hashing [54], and, also does not provide a high-level
domain-specific language to configure the switch. Switch-
Blade [6] enables some amount of protocol customization
and forwards packets at hardware speeds, but also acts as a
standalone switch and requires an FPGA as a target.
Measuring performance. Previous work has both mea-
sured [9, 21] and improved [14, 15, 34, 49, 56, 57, 64] the
performance of software virtual switches. Work on measure-
ment has converged on a set of performance metrics to com-
pare various switch architectures and implementations; our
evaluation uses these metrics to compare the performance of
PISCES to that of other virtual switches.
Measuring complexity. A number of metrics for measuring
the complexity and maintainability of a program written in a
domain-specific language are developed in software engineer-
ing [13, 32, 37, 38, 52]. One of the goal of PISCES is to make
it easier for the programmer to develop and maintain code.

536

For our evaluation, we have taken these metrics from software
engineering to evaluate the complexity of writing a program
in P4 vs. directly modifying the OVS source code in C.

7 Conclusion
The increasing use of software hypervisor switches in data
centers has introduced the need to rapidly modify the packet
forwarding behavior of these software switches. Today, mod-
ifying these switches requires both intimate knowledge of
the switch codebase and extensive expertise in network pro-
tocol design, making the bar for customizing these software
switches prohibitively high. As an alternative to this mode of
operation, we developed PISCES, a programmable, protocol-
independent software switch that allows a protocol designer to
specify a software switch’s custom packet processing behavior
in a high-level domain-specific language (in our case, P4); a
compiler then produces source code for the underlying target
software switch (in our case, OVS). PISCES programs are
about 40 times more concise than the equivalent programs in
native code for the software switch. We demonstrated that,
with appropriate compiler optimizations, this drastic reduc-
tion in complexity incurs only a small performance overhead
compared to the native software switch implementation.

Our prototype demonstrates the feasibility of a protocol-
independent software switch using P4 as the programming
language and OVS as the target switch. Moreover, our tech-
niques for software switch protocol independence and for
compiling a domain-specific packet-processing language to
an efficient low-level implementation should generalize to
other languages and targets. One way to achieve language-
and target-independence would be to first compile the domain-
specific languages to a protocol-independent high-level in-
termediate representation (HLIR) such as protocol-oblivious
forwarding [68] or NetASM [65], then apply the techniques
and optimizations from PISCES to the HLIR.

Another future enhancement for PISCES is to enable cus-
tom parse, match, and action code to be dynamically loaded
into a running protocol-independent switch. PISCES currently
requires recompilation of the switch source code every time the
programmer changes the P4 specification. In certain instances,
such as adding new features and protocols to running produc-
tion switches or temporarily altering protocol behavior to add
visibility or defend against an attack, dynamically loading
code in a running switch would be valuable. We expect future
programmable protocol-independent software switches to sup-
port dynamically loading new or modified packet-processing
code. Finally, PISCES does not implement P4 features that
maintain state across packets (i.e., counters, meters, or reg-
isters), which would require extending and generalizing the
Open vSwitch caching model to achieve acceptable perfor-
mance.

It is too early to see the effects of PISCES on protocol de-
velopment, but the resulting code simplicity should make it
easier to deploy, implement, and maintain custom software
switches. In particular, protocol designers can maintain their
custom software switch implementations in terms of a high-

level domain-specific language like P4 without needing to
track the evolution of the (larger and more complex) underly-
ing software switch codebase. The ability to develop propri-
etary customizations without having to modify (and track) the
source code for a software switch such as OVS might also be
a selling point for protocol designers. We intend to study and
characterize these effects as we release PISCES and interact
with the protocol designers who use it.

Acknowledgments
We thank our shepherd Jeff Mogul, William Tu, and the anony-
mous SIGCOMM reviewers for their valuable feedback that
helped improve the quality of this paper. We also thank Chai-
tanya Kodeboyina, Mihai Budiu, Ramkumar Krishnamoor-
thy, Antonin Bas, Abhinav Narain, and Bilal Anwer for their
invaluable support at various stages of this project. This re-
search was supported by Open Networking Research Center
(ONRC), The Stanford Platform Lab, National Science Foun-
dation (NSF) Awards CNS-1531281, CNS-1162112, and a
generous gift from Intel.

References
[1] P4 program for OVS, June 2015. https://github.com/blp/

ovs-reviews/blob/p4-workshop/tests/ovs.p4.
[2] P4-vSwitch. https://github.com/P4-vSwitch, 2016.
[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison Wesley, 1986.
[4] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,

A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese.
CONGA: Distributed Congestion-aware Load Balancing for Datacen-
ters. In ACM SIGCOMM, 2014.

[5] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker. Accountable Internet Protocol (AIP). In ACM SIG-
COMM, 2008.

[6] M. B. Anwer, M. Motiwala, M. b. Tariq, and N. Feamster. Switch-
Blade: A Platform for Rapid Deployment of Network Protocols on
Programmable Hardware. In ACM SIGCOMM, 2010.

[7] G. Back. DataScript: A Specification and Scripting Language for Binary
Data. In ACM SIGPLAN. Springer-Verlag, 2002.

[8] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. Information-
agnostic Flow Scheduling for Commodity Data Centers. In USENIX
NSDI, 2015.

[9] A. Bianco, R. Birke, L. Giraudo, and M. Palacin. OpenFlow Switching:
Data Plane Performance. In IEEE ICC, 2010.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming Protocol-independent Packet Processors. ACM SIG-
COMM CCR, July 2014.

[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hardware for SDN. In ACM
SIGCOMM, 2013.

[12] G. Brebner. Programmable Hardware for Software Defined Networks.
In IEEE ECOC, 2015.

[13] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using Metrics to
Evaluate Software System Maintainability. IEEE Computer, 1994.

[14] J. Corbet. BPF: The Universal In-kernel Virtual Machine. Linux Weekly
News, Eklektix Inc, 2014.

[15] J. Corbet. Extending BPF. Linux Weekly News, Eklektix Inc, 2014.
[16] B. Davie and J. Gross. A Stateless Transport Tunneling Protocol for

Network Virtualization (STT). Internet-Draft draft-davie-stt-08, Internet
Engineering Task Force, Apr. 2016. Work in Progress.

[17] M. Dillon and T. Winters. Network Functions Virtualization in
Home Networks. Technical report, Open Networking Foundation,
2015. https://www.opennetworking.org/images/

537

https://github.com/blp/ovs-reviews/blob/p4-workshop/tests/ovs.p4
https://github.com/blp/ovs-reviews/blob/p4-workshop/tests/ovs.p4
https://github.com/P4-vSwitch
https://www.opennetworking.org/images/stories/downloads/sdn-resources /IEEE-papers/network-func-virt-in-home-networks.pdf

stories/downloads/sdn-resources/IEEE-papers/
network-func-virt-in-home-networks.pdf.

[18] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks: Exploiting
Parallelism to Scale Software Routers. In SOSP, 2009.

[19] N. Dukkipati, G. Gibb, N. McKeown, and J. Zhu. Building a RCP (Rate
Control Protocol) Test Network. In HOTI, 2007.

[20] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
MoonGen: A Scriptable High-Speed Packet Generator. In IMC, 2015.

[21] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Performance
Characteristics of Virtual Switching. In IEEE CloudNet, 2014.

[22] D. Farinacci, S. P. Hanks, D. Meyer, and P. S. Traina. Generic Routing
Encapsulation (GRE). RFC 2784, Mar. 2000.

[23] K. Fisher and R. Gruber. PADS: A Domain-specific Language for
Processing Ad Hoc Data. In PLDI, 2005.

[24] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A Network Programming Language.
In ICFP, 2011.

[25] T. M. Gil and M. Poletto. MULTOPS: A Data-structure for Bandwidth
Attack Detection. In USENIX Security, 2001.

[26] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible
Data Center Network. In ACM SIGCOMM, 2009.

[27] J. Gross. Tunnel: Add support for matching on OAM packets. Git
commit 94872594b79d in [53], May 2014.

[28] J. Gross. Tunneling: Allow matching and setting tunnel ‘OAM’ flag.
Git commit b666962be3b2 in [53], July 2015.

[29] J. Gross and I. Ganga. Geneve: Generic Network Virtualization Encap-
sulation. Internet-Draft draft-ietf-nvo3-geneve-01, Internet Engineering
Task Force, Jan. 2016. Work in Progress.

[30] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy.
SoftNIC: A Software NIC to Augment Hardware. Technical Report
UCB/EECS-2015-155, UC Berkeley, May 2015.

[31] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A GPU-
accelerated Software Router. In ACM SIGCOMM, 2010.

[32] N. Heirbaut and T. Van Der Storm. Two implementation techniques
for domain specific languages compared: OMeta/JS vs. JavaScript.
Master’s thesis, Universiteit van Amsterdam, 2009.

[33] D. Hiebert. Ctags User Commands Version 5.8-1. Exuberant Ctags.
[34] Intel. DPDK: Data Plane Development Kit. http://dpdk.org,

2013.
[35] Intel. DPDK: Programmer’s Guide, 2013. http://dpdk.org/

doc/guides/prog_guide/index.html.
[36] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling Packet

Programs to Reconfigurable Switches. In USENIX NSDI, 2015.
[37] S. H. Kan. Metrics and Models in Software Quality Engineering. Addi-

son Wesley, 2nd edition, 2002.
[38] C. Kaner et al. Software engineering metrics: What do they measure

and how do we know? In IEEE METRICS. CiteSeer, 2004.
[39] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High

Bandwidth-delay Product Networks. In ACM SIGCOMM, 2002.
[40] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. HULA:

Scalable Load Balancing Using Programmable Data Planes. In SOSR,
2016.

[41] C. Kim. Programming the Network Dataplane in P4, 2016. http:
//netseminar.stanford.edu/03_31_16.html.

[42] C. Kim, P. Bhide, E. Doe, H. Holbrook, A. Ghanwani, D. Daly,
M. Hira, and B. Davie. In-band Network Telemetry (INT),
2016. http://p4.org/wp-content/uploads/fixed/INT/
INT-current-spec.pdf.

[43] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker.
In-band Network Telemetry via Programmable Dataplanes. In ACM
SIGCOMM, 2015. Demo.

[44] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. ACM TOCS, Aug. 2000.

[45] C. Lameter. NUMA (Non-Uniform Memory Access): An Overview.
ACM Queue, 2013.

[46] Linux Kernel Archives. http://kernel.org, 1997.
[47] M. Mahalingam, T. Sridhar, M. Bursell, L. Kreeger, C. Wright, K. Duda,

P. Agarwal, and D. Dutt. Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks. RFC 7348, Oct. 2015.

[48] P. J. McCann and S. Chandra. Packet Types: Abstract Specification of
Network Protocol Messages. In ACM SIGCOMM, 2000.

[49] S. McCanne and V. Jacobson. The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture. In USENIX, 1993.

[50] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation
in Campus Networks. ACM SIGCOMM CCR, Mar. 2008.

[51] Network Working Group. RFC 1624: Computation of the Internet
Checksum via Incremental Update, May 1994.

[52] P. Oman and J. Hagemeister. Metrics for assessing a software system’s
maintainability. In Conference on Software Maintenance, 1992.

[53] Open vSwitch. https://github.com/openvswitch/ovs, Oc-
tober 2015.

[54] R. Pagh and F. F. Rodler. Cuckoo hashing. Elsevier Journal of Algo-
rithms, 2004.

[55] I. Pepelnjak. Packet Forwarding in Amazon VPC, Decem-
ber 2013. http://blog.ipspace.net/2013/12/
packet-forwarding-in-amazon-vpc.html.

[56] B. Pfaff. P4 Parsing in Open vSwitch, June 2015. P4 Workshop,
http://p4workshop2015.sched.org/event/3ZQF.

[57] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The Design and Implementation of Open vSwitch. In USENIX NSDI,
2015.

[58] S. Previdi et al. SPRING Problem Statement and Requirements.
IETF, June 2015. https://datatracker.ietf.org/doc/
draft-ietf-spring-problem-statement.

[59] Proxmox Virtual Environment. https://www.proxmox.com/
en/proxmox-ve.

[60] P. Quinn and U. Elzur. Network Service Header. Internet-Draft draft-
ietf-sfc-nsh-04, Internet Engineering Task Force, Mar. 2016. Work in
Progress.

[61] J. Rajahalme. TCP flags matching support. Git commit dc235f7fbcff
in [53], October 2013.

[62] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker. Modular
SDN Programming with Pyretic. USENIX ;login:, 2013.

[63] T. Rinta-Aho, M. Karlstedt, and M. P. Desai. The Click2NetFPGA
Toolchain. In USENIX ATC, 2012.

[64] L. Rizzo. Netmap: A Novel Framework for Fast Packet I/O. In USENIX
ATC, June 2012.

[65] M. Shahbaz and N. Feamster. The Case for an Intermediate Representa-
tion for Programmable Data Planes. In SOSR, 2015.

[66] N. Shelly, E. J. Jackson, T. Koponen, N. McKeown, and J. Rajahalme.
Flow Caching for High Entropy Packet Fields. In HotSDN, 2014.

[67] M. Smith and L. Kreeger. VXLAN Group Policy Option. Internet-Draft
draft-smith-vxlan-group-policy-02, Internet Engineering Task Force,
Apr. 2016. Work in Progress.

[68] H. Song. Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane. In HotSDN, 2013.

[69] V. Srinivasan, S. Suri, and G. Varghese. Packet Classification Using
Tuple Space Search. In ACM SIGCOMM, 1999.

[70] J. Stringer. datapath: Allow matching on conntrack label. Git commit
038e34abaa31 in [53], December 2012.

[71] J. Stringer. Add connection tracking label support. Git commit
9daf23484fb1 in [53], October 2013.

[72] M. Varvello, R. Laufer, F. Zhang, and T. Lakshman. Multi-Layer Packet
Classification with Graphics Processing Units. In CoNEXT, 2014.

[73] Y.-S. Wang and P. Garg. NVGRE: Network Virtualization Using Generic
Routing Encapsulation. RFC 7637, Oct. 2015.

[74] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen. Scal-
able, High Performance Ethernet Forwarding with CuckooSwitch. In
CoNEXT, 2013.

538

https://www.opennetworking.org/images/stories/downloads/sdn-resources /IEEE-papers/network-func-virt-in-home-networks.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources /IEEE-papers/network-func-virt-in-home-networks.pdf
http://dpdk.org
http://dpdk.org/doc/guides/prog_guide/index.html
http://dpdk.org/doc/guides/prog_guide/index.html
http://netseminar.stanford.edu/03_31_16.html
http://netseminar.stanford.edu/03_31_16.html
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://kernel.org
https://github.com/openvswitch/ovs
http://blog.ipspace.net/2013/12/packet-forwarding-in-amazon-vpc.html
http://blog.ipspace.net/2013/12/packet-forwarding-in-amazon-vpc.html
http://p4workshop2015.sched.org/event/3ZQF
https://datatracker.ietf.org/doc/draft-ietf-spring-problem-statement
https://datatracker.ietf.org/doc/draft-ietf-spring-problem-statement
https://www.proxmox.com/en/proxmox-ve
https://www.proxmox.com/en/proxmox-ve

	Introduction
	The Need for a Protocol-Independent Switch
	Background
	PISCES Prototype
	The P4-to-OVS Compiler in PISCES
	Modifications to OVS
	The Compiler's Back-end Optimizer

	Evaluation
	Complexity
	Development complexity
	Change complexity

	Forwarding Performance
	Experiment setup and evaluation metrics
	End-to-end performance
	Microbenchmarks

	Related Work
	Conclusion

