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Abstract—A flow cache is a fundamental building block for
flow-based traffic processing. Its efficiency is critical for the
overall performance of a number of networked devices and
systems. However, if not properly managed, the flow cache can be
easily filled up and rendered ineffective by traffic patterns such
as flooding attacks and scanning activities which, unfortunately,
commonly occur in the Internet.

In this paper, we show that popular cache replacement policies
such as LRU cause the flow caches to evict the so called heavy-
hitter flows during flooding attacks. To address this shortcoming,
we build upon our recent work [1] and construct a replacement
policy that is more resilient to floods and yet performs similarly
to other policies under common network traffic conditions.

Index Terms—Cache replacement policies, Genetic Algorithms,
Heavy-hitter flows.

I. INTRODUCTION

A variety of network services and applications depend on

the ability to perform flow-based network traffic processing,

that is, processing packets based on some state information

associated to the flows to which the packets belong. For

example, this form of stateful traffic processing is necessary

to implement proxy firewalls, TCP offload engines, intrusion

detection systems, traffic shaping, NAT, and collect statistics.

The fundamental element that enables flow-based process-

ing is the flow table that is used to record flow information.

Modern switches, routers and middle-boxes store the flow

table either entirely in high-speed memory able to support

operations at line rate or, due to the high costs of fast memory,

in a memory hierarchy. The hierarchy is composed of a small,

high-speed memory that, ideally, is responsible for processing

the largest share of the traffic, and of a lower-speed but large

memory that is used for processing the remaining share. We

term flow cache the flow table that resides in the high-speed

memory.

Clearly, the flow cache has a significant role in overall

system performance and, therefore, it is important that the flow

cache is continuously managed to consider the current traffic

behavior. Even more so when the traffic exhibits an abrupt and

very large increase of non-legitimate flows which typically

consist of a few packets per flow caused by some form of

Distributed Denial of Service (DDoS) such as TCP SYN flood

or by scanning activities. These attacks and activities can flood

the flow cache with state information about short-lived flows

that is of no benefit for the system performance as the hit rate

of the cache reduces to zero and the response time noticeably

deteriorates [2]. We argue that under these situations the

replacement policy of a flow cache should strive to maintain

the state of heavy-hitter flows because these flows are typically

in a small number but are responsible for a prevalent portion of

traffic. For example, consider an OpenFlow switch that upon

a flow cache miss asks a remote controller to install a flow

cache entry [3]. In this case, losing a flow entry of a heavy-

hitter could cause significant disruption especially during a

flood due to long response delay of the overloaded controller.

In this paper, we analyze the behavior of several popular

replacement policies such, as LRU and Segmented LRU

(SLRU) [4], under flooding attacks. These replacement poli-

cies often work close to optimum under normal traffic condi-

tions [5] and are often implemented in commercial products

due to their simplicity [2]. But they often fail upon specific

workloads [2]. We also analyze two replacement policies that

address the limitations of LRU: Low Inter-reference Recency

Set (LIRS) [2] and Single-Step SLRU (S3-LRU) [6]. Finally,

we build upon our recent work [1] to construct, using Genetic

Algorithms (GA), a replacement policy that preserves heavy-

hitter flows during flooding periods. The evolved policy is

simple enough to be implemented in hardware yet its results

are comparable with more sophisticated policies.

II. MOTIVATION AND BACKGROUND

It is well-known that many kinds of DDoS attacks and

scanning activities constantly happen over the Internet. Some

of these are responsible for an abrupt increase in the number

of concurrent, short-lived flows. The consequences of these

flows on the end-to-end performance is potentially disrupting,

especially if they result in resource exhaustion at the victim

end. For example, a TCP SYN flood where a multitude of

attackers send single-packet flows can easily exhaust the OS

resources of a victim computer and/or cause severe packet

drops at the network devices close to the victim. Other

application-level attacks can be more subtle in that they can

create seemingly valid application requests (e.g., web page

requests) that can exhaust OS and network resources. Finally,

the effects of these flows can be detrimental for flow-based

traffic processing at the networking equipment on the paths

to the attacked victims. This is because a flood of short-lived

flows can fill up the flow cache of these devices with irrelevant
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However, a flow cache is ruled by a replacement policy

(RP) that is responsible for deciding which state should stay

in the cache and which one should be evicted any time the

cache is full. Therefore, if the replacement policy is capable

of evicting the irrelevant flows, a network device may be able

to provide its service for legitimate flows, at least with an

increased robustness than what is achieved by using standard

replacement policies.

For instance, the Least Recently Used (LRU) replacement

policy is widely used in networked systems, in particular, all

systems evicting flows upon an inactivity timeout must inher-

ently implement LRU. However, LRU caches are susceptible

to the eviction of frequently used items during a burst of new

items. Many efforts have been made to address its inability

to cope with access patterns with weak locality. For example,

Segmented LRU (SLRU) [4] seeks to combine both locality

and frequency to achieve better hit rates. Low Inter-reference

Recency Set (LIRS) [2] addresses the problem of working with

sequential or cyclic (loop-like) pattern. The main idea behind

the LIRS algorithm is to utilize the information from recency

and recent Inter-Reference Recency (IRR, the number of other

distinct items accessed between two consecutive references to

an item).

Our previous work [6] introduces a replacement policy,

called Single Step SLRU (S3-LRU), that aims at tracking

heavy-hitter flows. It is a simple variation on SLRU: specifi-

cally, instead of moving a flow state to the front of the list

when it is accessed, S3-LRU advances the state only of a

single step toward the front of the list. Lastly, our recent work

in [1] demonstrates how to apply Genetic Algorithms (GA) to

“evolve” a replacement policy tailored at tracking the heavy-

hitters starting from recorded traffic traces.

III. DEFINITIONS AND SETUP

A. Heavy-hitters

Depending on the application, the definition of a flow

changes adequately. One that is commonly used identifies a

flow based on the 5-tuple composed of its IP addresses, port

numbers and protocol. In our work, we consider a flow to be

a unidirectional stream of packets sharing the same 5-tuple,

but our approach can be easily generalized to allow the flow

identifier to be a function of the header field values. We use a

60 s timeout to determine the end of a flow unless we observe

the TCP connection tear down.

We define a heavy-hitter (heavy-hitters) as a flow that

utilizes more than a certain percentage of a link bandwidth

during its whole lifetime. In order to avoid bias from short-

lived flows which overall do not carry significant amount of

traffic, we require a heavy-hitter to exist for at least five

seconds otherwise it is penalized. Therefore, we compute

a flow’s link utilization as totalbytes
max(5,lifetime) . Throughout this

paper, we group flows into three reference categories based

on their utilization: very large flows (> 0.1% of the link

capacity), large flows (between 0.1% and 0.01%), medium

flows (between 0.01% and 0.001%). We then presents results

for each category.

v. large large medium Total
Flows 0.23% 0.93% 9.43% 4.0M
Packets 31.97% 18.92% 20.71% 53.0M
Bytes 68.35% 17.13% 9.22% 33.5G

TABLE I: Mawi dataset. (1 hour, 155 Mbps link, avg/min/max

active flows: 67.3K/56.5K/250.1K)
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Fig. 1: Number of new flow/s in our dataset.

B. Dataset

We use a single trace of Internet backbone traffic: a 1-

hour bidirectional trace from the Mawi archive collected at

the 155 Mbps WIDE backbone link (samplepoint-F on March

20th 2008 at 14:00) [7]. Table I summarizes the working

dimensions of our trace and shows a breakdown of the trace

into the three flow categories. Throughout the rest of the

paper we display only a short interval from this dataset to

demonstrate the results closely.

On top of the traffic trace we inject traffic to simulate several

periods of DDoS that flood a victim end host with a large

number of new flows as shown in Fig. 1. Each period lasts for

5 s. First, we inject traffic consisting of single-packet flows

in three periods with 60k, 120k and 240k flows/s, at time 49,

69 and 89 s, respectively. At 240k flows/s we reach the link

capacity. Second, we simulate application-based DDoS attacks

with flows of 3 packets (e.g., representing the TCP connection

setup). The interval between subsequent packets of a flow is set

to 20 ms. We generate two attacks at time 129 and 159 s with

40k and 80k flows/s, respectively, so as to not exceed the link

capacity. Last, we inject attacks at time 199 and 229 s with 5-

packet flows by generating 25k and 50k flows/s, respectively.

We use a 20 ms interval between packets of the same flow.

C. Flow Cache Setup

We set the flow cache size to be 8K flow-states. The cache

is divided into equally-sized buckets, each holding a list of 32

flow states. Each observed packet causes a lookup in one of

the flow cache bucket based on an hash of the flow identifier.

Each list is managed independently from others, although they

share the same replacement policy. The last flow state of a list

is the one to be evicted in case the list is full. Using LRU

replacement policy, such a setup provides 95% hit rate on

Mawi dataset, i.e., only 5% of lookups witness a cache miss.

This is obtained without accounting the cache misses due to

the first packet of each flow that are inevitable.
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Fig. 2: Number of evicted heavy-hitters under LRU.

IV. ANALYSIS

In this section, we present an analysis of the performance of

several replacement policies in our dataset. We evaluate each

replacement policy using the number of evicted heavy-hitter

flows during the attack periods. The policies we consider are

LRU, SLRU, S3-LRU and LIRS.

We start with LRU. Fig. 2 shows that the LRU policy

performs poorly: even under the weakest flood, LRU evicts

many heavy-hitters in all three categories. Primarily, the cause

of its poor performance is that the attack flows are inserted at

the head of the list meaning they are given more importance

than any flow already in the cache. During a flood, all flows

whose packet rate is lower than the flow rate of the flood are

evicted.

SLRU [4] extends LRU to take both recency and frequency

into consideration. The list is divided in two segments: pro-

tected and probationary segment. The insert position of SLRU

is at the head of the probationary segment. A flow only moves

to the protected segment if it receives a lookup before being

evicted from the probationary segment. After experimenting

with several values, we set the insert position at item 21 in

the list, making the size of the probationary segment about one

third of the list. Flow states inside the protected segment are

less exposed to floods whereas flow states in the probationary

segment compete with the attack flows. Fig. 3 demonstrates

that SLRU can cope with floods with single-packet flows.

However, during a flood of multi-packet attack flows, SLRU

evicts heavy-hitters in an amount comparable to LRU. This is

due to the simple strategy for managing the protected segment.

It is immediate to see that an attack flow with only two packets

can easily be moved to the protected segment causing a heavy-

hitter to be shifted back to the probationary segment.

Unlike SLRU, S3-LRU does not order the items within each

segment by their last access but at each lookup it advances

the accessed flow of a single position towards the head of the

list (protected segment) by swapping its position with that of

the adjacent item. This makes it more likely that only heavy-

hitters compete with each other in the protected segment. After

experimenting with several values, we set the insert position at

item 7 in the list, making the size of the probationary segment

about three quarters of the list. Fig. 4 shows that overall

the number of evicted heavy-hitters during attack periods is
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Fig. 3: Number of evicted heavy-hitters under S-LRU.
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Fig. 4: Number of evicted heavy-hitters under S3-LRU.

significantly lower than with the other policies. However,

evicted large and medium heavy-hitters witness an increase.

Lastly, we analyze the LIRS [2] policy. This policy cannot

utilize the structure of a flow cache described previously as

it requires two stacks managed with LRU, one of the size

of the flow cache and another smaller one with a variable

size. The policy is executed upon all states in the flow cache.

The stacks are used to compute recent Inter-reference Recency

and to keep flow state in the memory as well as to keep the

status of flows that are evicted from the memory. Based on

IRR, the flows are divided into two sets, flows with low IRR

(LIRS) and high IRR (HIRS). As suggested by the authors

in [2], we allocate 99% of cache size for LIRS and 1% for

HIRS. The simulation on the traffic trace shows that such a

setup stabilizes the behavior of the cache to maintain heavy-

hitters (see Fig. 5). Unfortunately, the number of evicted large-

and medium-sized heavy-hitters is relatively large even during

normal traffic conditions.

Therefore, we conduct an experiment with a different setup

where we allocate only 90% of cache capacity to LIR items

and the rest is available for HIR items. Such a setup allows

to reduce the number of evicted heavy-hitters during normal

periods but the flow cache is then more susceptible to floods,

as depicted in Fig. 6. For instance, the flood at time 129 s

causes the eviction of many heavy-hitters. In this case, the

small intensity of the flood (40K flows/s) causes the packets

of the flooding flows to be sufficiently close in terms of inter-

reference recency. And so, they are deemed as worth caching

by LIRS.
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Fig. 5: Number of evicted heavy-hitters under LIRS (99% LIR

items)
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Fig. 6: Number of evicted heavy-hitters under LIRS (90% LIR

items)

V. DESIGN

Our goal is to design a replacement policy in the family of

simple replacement policies. We define a simple replacement

policy as an algorithm that works by ordering the list of flow

states only. It requires no additional structures in comparison

to others, more sophisticated algorithms such as LIRS.

Based on the analysis and especially on the results of S3-

LRU, several questions arise — Is it appropriate to advance a

flow state receiving a hit just for a single step? Should the step

be variable? When to trigger variation of the step? Where to

insert new flow states in that case? To answer these questions,

we decide to use Genetic Algorithms (GA) to explore the

space of possible replacement policies to identify the most

effective. Our approach leverages our previous experiences

with the evolution of replacement policies [1] and focuses

specifically on deriving a replacement policy that is more

resilient to flooding attacks.

In this section, we provide a general definition of a replace-

ment policy based purely on ordering the flow states in the

list. This definition is subsequently adopted by GA to work

upon.

A. Replacement Policy Definition

We regard the flow cache divided into equally-sized buckets

of N flow states (or simply flows) F . Each bucket forms a

list of flows ordered by the replacement policy. The role of

a replacement policy (RP) is to reorder flows based on their

access pattern. Each packet causes one cache access and one

execution of the RP. If the current packet causes a cache miss

(e.g., a new flow arrives) and the cache is full, the flow at the

end of the list is evicted.

Formally, we can express a RP that is based solely on the

access pattern as a pair 〈s, U〉 where s is a scalar representing

the zero-based position for inserting new flow states and U

is a vector (u1, u2, . . . , uN ) which defines how the flows

are reordered. Specifically, when a flow F stored at position

post(F ) is accessed at time t, its new position is chosen

as post+1(F ) = upost(F ), while all flows stored in between

post+1(F ) and post(F ) see their position increased by one.

For example, the LRU policy for a cache of size 4 is expressed

with LRU = 〈0, (0, 0, 0, 0)〉.

B. Evolution of Replacement Policies

The goal of GA is to find a RP that has the least number of

evicted heavy-hitters or, using caching terminology, minimizes

the miss rate for heavy-hitters. We use the number of heavy-

hitters that witness a cache miss as a metric to capture the

effectiveness of a RP—the objective is to reduce this number.

The evolution phase runs offline. We use a smaller traffic

sample (5 minutes) from a previous day that was amended

with just a single short flood with intensity 30k flows/s. If

more floods are added, the GA would overfit the RP to floods

while for common traffic pattern it would perform poorer than

other policies.

The vector-based definition of a RP is a good fit to en-

code the candidate solution. It supports the standard genetic

operators for mutation and crossover. Mutation modifies a

particular value in the vector with given probability pmut while

crossover swaps parts of the vector between two solutions with

probability pcross.

We set the GA to evolve a population of six replacement

policies (candidates), initially, generated at random. We use

a relatively small population so the evolution process can

converge quickly, potentially allowing the RP to be adapted

to ongoing traffic. The evolution happens in cycles that pro-

gressively refine the solution. In each cycle, the candidates

are evaluated by a fitness function. The fitness function is

the sum of cache misses for the flows in the three reference

groups weighted by the link utilization thresholds: 0.1% for

the first group, 0.01% for the second and 0.001% for the

third, respectively. This assigns higher importance to track

larger heavy-hitters. Effectively, the fitness function simulates

the cache behavior of a candidate RP. Evaluated candidates

(offspring) replace the parent population If the parent popula-

tion contains the best candidate of both population, the best

candidate is preserved. Subsequently, tournament selection

picks six candidates based on their fitness value (fitter RP

have higher probability to be selected multiple times) to form a

new population of stronger candidates. Crossover and mutation

operators are applied to spread information and preserve

variability among these candidates. Then, the new cycle begins

with the evaluation of a new offspring population.
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Fig. 7: An example of RP produced by GA using the Mawi dataset. The arrows represent where to move a flow when accessed.

RP = 〈18, (0, 0, 1, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 15, 15, 15, 15, 15, 16, 18, 18, 18, 18, 19, 21, 22, 23)〉.

 0

 500

 1000

 1500

 2000

 0  50  100  150  200  250

#
 o

f 
ev

ic
te

d
 h

ea
v

y
−

h
it

te
rs

Time [s]

v.large
large
medium

Fig. 8: Number of evicted heavy-hitters flows under GARP.

We split the run of GA to two consecutive phases each with

a different setup of parameters which allows to improve the

search time. We also apply heuristics to exclude bogus candi-

dates prior to fitness function to exclude undesired solutions

(e.g., those that do not utilize entire list due to unreachable

positions). We refer reader to our previous work in [1] to learn

about the precise GA setup. Fig. 7 presents an example of a

GA-produced RP (GARP).

VI. EVALUATION

In this section, we evaluate the genetically evolved re-

placement policy and compare its performance with the other

replacement policies. The traffic trace as well as the flow cache

setup is identical to the setup used during the analysis (Mawi

traffic trace injected with floods and flow cache for 8192 flow

states divided into buckets of size 32). We use the genetically

evolved replacement policy (GARP) displayed on Fig. 7 to

manage each bucket of the flow cache.

Fig. 8 shows that the impact of floods on the number

of evicted heavy-hitters was further reduced due to GARP

policy. Unlike SLRU, GARP implements more fine-grained

structure to promote flows to the front of the list. This allows

GARP to distinguish between multi-packet flooding flows and

heavy-hitters. In comparison to S3-LRU, GARP is quicker in

promoting heavy-hitters to the front of the list and so achieves

less evicted medium and large heavy-hitters during floods.

The theoretical limit that cannot be achieved by any real RP

is an oracle replacement policy (ORC) based on a precomputed

list of forthcoming heavy-hitters and their timeline. Therefore,

it can always select the best victim available, preferably a flow

not in the list or a heavy-hitter that is about to end soon. It

also prioritizes heavy-hitters by the weight of each category.

f=40k flows/s, p=3, t=5 s
RP v.large large medium
LRU 243 581 1582
SLRU 39.0% 63.5% 104.9%

S3-LRU 6.7% 25.0% 70.9%
LIRS90 38.5% 80.0% 124.9%
LIRS99 2.8% 6.7% 37.9%
GARP 3.3% 13.2% 62.0%
ORC 0.3% 0.9% 9.2%

f=25k flows/s, p=5, t=5 s
RP v.large large medium
LRU 750 1188 2729
SLRU 3.1% 13.7% 38.7%

S3-LRU 3.9% 22.4% 56.7%
LIRS90 2.3% 8.5% 38.3%
LIRS99 2.5% 9.6% 42.3%
GARP 1.6% 8.2% 35.3%
ORC 0.2% 2.3% 11.0%

TABLE II: Reduction ratio of RP to LRU (with flow rate f,

packet rate p and duration t, LIRS99 allocates 99% of cache

capacity for LIR items whereas LIRS90 only 90%)

Table II quantifies the reduction of evicted heavy-hitters

during various floods. The reduction is computed as a ratio

of a maximum number of evicted heavy-hitters per second by

the considered RP and the maximum number of evicted heavy-

hitters by LRU (both maximum values are picked from within

the interval of the flood). It is hard to compute the sum of all

evicted heavy-hitters due to a certain flood as it is not clear

what interval to consider. Each RP behaves differently and the

effects of floods may be shifted to others in time. Nevertheless,

we observe from Fig. 8 and Table II that GARP outperforms

other simple replacement policies and performs comparably to

the more sophisticated LIRS policy during attacks.

The presented policies slightly differ in their hit rate (not

accounting for the misses due to the first packet of each

flow) under normal traffic conditions in our setup. The best

performing is SLRU with nearly 96% hit rate followed by LRU

with 95%. GARP achieves a hit rate of 94% whereas LIRS99

and S3-LRU achieve approximately 92%. The worsened hit

rate of LIRS and S3-LRU is due to focus on heavy-hitters –

they tend to ignore the small flows which may be many in

Internet traffic. On the other hand, during the flood at 129 s

(that is 40k flows with 3 packets per flow), LRU and SLRU

achieve a hit rate of around 77% for the legitimate traffic, S3-

LRU achieves 82%, GARP achieves 86% and the LIRS99 hit

rate is still 92%.



VII. CONCLUSION

We evaluated several simple and one sophisticated cache

replacement algorithms under flow flooding conditions which

are common in the Internet. Further, we obtained a simple

replacement policy optimized to keep the state of heavy-

hitters in the flow cache during flood attacks. We envision that

this simple mechanism may find its hardware and software

implementation in various network devices that implement

flow-based traffic processing such as OpenFlow switches, TCP

offload engines and others.

Finally, we note that it may also be beneficial to cache low-

rate flows carrying latency-sensitive traffic such as VoIP. We

plan to consider this problem in our future work.
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