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Abstract

Making distributed systems reliable is notoriously dif-

ficult. It is even more difficult to achieve high reliabil-

ity for federated and heterogeneous systems, i.e., those

that are operated by multiple administrative entities and

have numerous inter-operable implementations. A prime

example of such a system is the Internet’s inter-domain

routing, today based on BGP.

We argue that system reliability should be improved

by proactively identifying potential faults using an on-

line testing functionality. We propose DiCE, an approach

that continuously and automatically explores the system

behavior, to check whether the system deviates from its

desired behavior. DiCE orchestrates the exploration of

relevant system behaviors by subjecting system nodes to

many possible inputs that exercise node actions. DiCE

starts exploring from current, live system state, and op-

erates in isolation from the deployed system. We de-

scribe our experience in integrating DiCE with an open-

source BGP router. We evaluate the prototype’s ability to

quickly detect origin misconfiguration, a recurring oper-

ator mistake that causes Internet-wide outages. We also

quantify DiCE’s overhead and find it to have marginal

impact on system performance.

1 Introduction

Internet’s inter-domain routing, based on the standard

Border Gateway Protocol (BGP), is a prime example

of a distributed system that is fundamentally federated

and heterogeneous. Multiple administrative domains au-

tonomously control their own BGP routers and policies,

while ensuring universal connectivity. Further, the open

standards upon which the Internet is built allow for and

promote numerous, mutually inter-operating implemen-

tations of BGP. Examples of other systems of such nature

include DNS, electronic mail, peer-to-peer content distri-

bution [10], content and resource peering [5].

Recent events have shown that Internet’s routing falls

short of ensuring reliable operation at all times. For

example, Pakistan Telecom mistakenly managed to hi-

jack the vast majority of traffic directed toward YouTube,

making the popular website unreachable to many users

for almost two hours [2]1.

In general, system behavior is the aggregate result of

interleaved actions of system nodes, each of which is

generally driven by code as well as configuration. Un-

derstandably, it is hard to reason a priori about every

corner case and anticipate all possible combinations of

system configurations. As a consequence, insidious bugs

can survive until the system is deployed or configuration

mistakes become a problem under certain unanticipated

conditions — all these with dire consequences for the

system’s reliable operation.

We argued [9] that making heterogeneous and feder-

ated distributed systems reliable is challenging because

(i) the source code of every node may not be read-

ily available for testing and (ii) competitive concerns

are likely to induce individual providers to keep private

much of their current state and configuration.

Our overarching vision is to harness the continuous

increases in available computational power and band-

width to improve the reliability of distributed systems.

In particular, we argue for an online testing functionality

that strives to detect what node actions lead to potential

faults (i.e., deviations of system components from their

expected behavior).

We have to address several difficult challenges (of

which a more thorough account is in [9]). First, the fed-

erated nature of the systems we target give rise to a num-

ber of issues because of the different administrative do-

mains desire to keep private their node states and config-

urations. Most importantly, no single node can have un-

restricted access to remote node state and configuration.

1This problem persists to this day. China Telecom managed to hi-

jack 10% of the Internet prefixes as recently as April 2010. Google’s

services were mistakenly hijacked in July and August of 2010 [1].



This affects how we can drive the exploration of system

behavior and how we can check system-wide state to de-

tect faults. This also hinders the possibility of simply

applying existing approaches that drive exploration from

the initial state (e.g., [22]). In addition, we need to care-

fully consider what information crosses domain bound-

aries and how to preserve its confidentiality. Second, sys-

tem heterogeneity makes it difficult if not impossible to

have local access at one node to the source or binary code

of other nodes. This difficulty and other constraints we

mentioned above mean that we cannot use existing tech-

niques for live model checking (e.g., [21]) that operate

locally. Last but not least, systematic exploration of sys-

tem behavior or even single node behavior runs into the

problem of exponential explosion of the number of pos-

sible node actions.

In this paper, we introduce DiCE, an approach that

continuously and automatically explores the system be-

havior, to check whether the system deviates from its

desired behavior. DiCE orchestrates the exploration of

relevant system behaviors by subjecting system nodes to

many possible inputs that systematically exercise node

actions. To quickly reach relevant states and overcome

problems with an exponential number of actions, DiCE

starts exploring from current system state, while it oper-

ates in isolation from the deployed system.

We describe our general vision and outline the prob-

lem we want to address in DiCE (§2.1). We provide an

initial design (§2.3) and discuss our experience in inte-

grating DiCE with a BGP router (§3). We evaluate (§4)

the prototype’s ability to quickly detect origin misconfig-

uration, a recurring operator mistake that causes Internet-

wide outages. We also quantify DiCE’s overhead and

find it to have marginal impact on system performance.

2 DiCE

We start by providing an overview of the problem that

we want to address.

2.1 Problem overview

Our goal is to systematically explore system behavior so

as to detect potential faults. At the same time, the ap-

proach that orchestrates the exploration of system behav-

ior needs to accommodate the constraints of federated

and heterogeneous environments.

A central question for reaching this goal is in under-

standing how to drive system behavior. We observe that

distributed system behavior is the aggregate result of in-

terleaved node actions. In turn, these actions are deter-

mined by the paths taken through the code running at

the nodes that is driven by the configuration and the in-

puts. Therefore, to explore node actions, we want to sub-

ject the node’s code to inputs that systematically exercise

the node’s possible actions. In other words, we need a

mechanism that systematically exercises the node’s code

paths.

In practice, achieving extensive path coverage is

greatly limited by the exponential explosion in the num-

ber of possible code paths. Given our desire to quickly

detect potential faults, we would ideally just focus on

covering relevant states. However, these are usually deep

in the execution path. Recall that we target systems that

are likely to run for a long time over which a large his-

tory of inputs accumulates. Thus, we need to avoid the

need to replay a long history of inputs from initial state

to reach a desired point in the code, as doing so can be

prohibitively time-consuming.

An intriguing question is whether local testing of a

single node is sufficient to detect such actions. While

local testing is certainly a necessary step, we argue that

it alone is not sufficient. In fact, local testing does not al-

low to observe far reaching consequences of single node

actions. These consequences need to be observed from a

system-wide perspective.

Therefore, we still need to be able to judge the system-

wide consequences of node actions. In the general case,

this cannot be done locally because a node does not

know, and we assume cannot obtain the state and con-

figuration, of other nodes. Also, a remote node could

be running a different implementation. Effectively, we

face the problem of how to let the local node communi-

cate with remote nodes during exploration of behavior.

However, we must not affect the deployed system and, at

the same time, we need to support checking node states

while preserving confidentiality of private information.

In summary, we are trying to address these questions:

(i) how can we automatically exercise code paths? (ii)
how can we enable code path exploration to guide state

space exploration? (iii) how can we extend the hori-

zon of local state space exploration to reach across the

network? and (iv) how can we check for faults while

preserving privacy between parties?

In this paper, we focus on the first two of these ques-

tions and provide a discussion around the other two. Be-

fore presenting our initial design, we proceed to briefly

review certain software testing techniques that offer the

basic mechanics necessary for systematically exploring

a node’s code paths.

2.2 Background

Symbolic execution (e.g., see [8, 13]) is an automated

testing technique that executes a program by treating the

inputs to the program as symbolic. Upon encountering

a branch that involves symbolic values, the symbolic ex-

ecution engine creates the constraints that correspond to
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Figure 1: A concolic execution engine negates the pred-

icates to try to systematically explore code paths (blocks

that are executed in each run are shown as shaded).

both sides of the branch, and schedules execution to take

place down both paths. It then queries a constraint solver

to determine which paths are feasible, so that they can be

explored. While symbolic execution is in theory capable

of exploring all possible paths in the program, in prac-

tice it is severely limited as the number of paths to ex-

plore in an application grows exponentially with the size

of the input and the number of branches in the code. A

typical symbolic execution engine starts exploring paths

from the beginning of the program and progressively ex-

plores all paths for which it can find suitable input values.

Concolic execution (e.g., see [7, 11]) is a variant of

symbolic execution that, instead of strictly operating on

symbolic inputs, executes the code with concrete inputs

while still collecting constraints along code paths. To

drive execution down a particular path, the concolic ex-

ecution engine picks a constraint (e.g., branch predicate)

and queries the constraint solver to find a concrete input

value that negates the constraint. Figure 1 illustrates this

process. The main benefit of concolic execution is the

ease in interacting with the environment (due to the use

of concrete values), and less overhead during execution

than the “classic” symbolic execution (e.g., only one call

to the constraint solver for every branch).

2.3 Initial design

DiCE employs a concolic execution engine to solve

the mechanical problem of exercising all possible code

paths. Unlike standard concolic execution, DiCE starts

exploring from the current, live state because of the de-

sire to (i) quickly detect potential faults, and (ii) avoid
the overhead of replaying execution from initial state to

reach a desired point in the code (as we expect a large

history of inputs).

First, DiCE takes a node checkpoint. Then, DiCE

clones this checkpoint and feeds it with a previously ob-

served input (i.e., a message) to record the constraints

that are encountered on the code path executed by invok-

ing a message handler with that input. We rely on the

programmer to identify message handlers and we only

use those to process inputs for path exploration. This

design decision lets us quickly zoom in on the relevant

code, at the expense of requiring some developer in-

volvement2. After completing the recording of these ini-

tial constraints recording, the concolic execution engine

starts negating constraints one at a time, resulting in a set

of inputs. To explore a particular input, DiCE makes a

clone of the checkpoint, and then resumes execution with

that input from the checkpointed state. The constraints

encountered on the code path during execution with that

particular input are once again recorded and used to up-

date the aggregate set of constraints so far encountered.

Updating the aggregate set is important for achieving full

coverage, since the previous runs might not have reached

all branches that exist in the code.

Note that we want the exploratory execution over a

node checkpoint to work alongside the running system.

Therefore, DiCE intercepts the messages generated dur-

ing exploration.

2.4 Discussion

We consider the ability to explore node actions that we

described as the initial building block for providing a full

online testing functionality.

In fact, once we can locally exercise all possible node

actions, we can then turn to how to observe their conse-

quences on the system-wide state. We anticipate that we

would let these actions result into messaging with other

nodes in a way that doesn’t affect the live system. For

instance, we could intercept all messages and let them

go through isolated communication channels. In addi-

tion, we would enable remote nodes to checkpoint their

state and process these messages in isolation over their

checkpointed states. Effectively, this would extend the

scope of the concolic execution engine to reach across

the network and exercise system behavior.

Ultimately, we want to check system-wide states for

faults. We envision that, by having a notion of desired

system behavior, we could check whether the system de-

viates from its desired behavior during the exploration

with particular inputs. However, it is challenging to

check system-wide states without compromising the con-

fidentiality of private information. As we noted earlier,

there cannot be unrestricted access to node states and

configurations. In essence, we would want to control the

information shared across domains and ensure that nodes

only communicate state information through a narrow in-

terface yet capable to allow us to detect faults.

2Given the great importance of the deployed federated systems, this

effort is well-justified.
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3 Experiences with the BGP use case

This section describes our DiCE prototype and details

our experiences for integrating with the BGP implemen-

tation of BIRD [3] 1.1.7 open-source routing daemon.

Because of space limit, we omit a review of BGP and

point the reader to [14] for a succinct overview and to the

RFC [20] for full details. We first introduce Oasis [11],

the concolic execution engine we use.

3.1 Oasis

We use the Oasis concolic execution engine [11] as the

basis for code path exploration. Oasis is a result of sub-

stantial modification of the Crest [7] concolic execution

engine. Oasis instruments C programs using CIL [18] to

be able to track at run-time the statements executed and

record the constraints on symbolic inputs. Oasis handles

the entire C language and supports interaction with the

network and filesystem. Oasis has multiple search strate-

gies, and it can execute multiple explorations in parallel.

The default exploration strategy, which we use, attempts

to cover all execution paths reachable by the set of con-

trolled symbolic inputs.

3.2 Prototype implementation

Our DiCE prototype consists of a modified version of

Oasis and a part written in C and integrated in BIRD.

We modify Oasis in three ways. First, we introduce

support in Oasis to explore by resuming execution from

a checkpoint instead of starting a new execution for each

set of inputs. Second, we change the Oasis filesys-

tem/network model to control the interactions of the pro-

gram under test with the environment and ensure isola-

tion from the running system. Third, we modify Oasis to

allow both the original and the instrumented code to be

automatically compiled and linked in a single executable,

where they co-exist and operate on the same data in a

similar fashion to the work by Anagnostakis et al. [6].

This enables the running systems to run with virtually no

overhead, and only during exploration, which takes place

off the critical path, switch to the instrumented code.

For integrating with BIRD, we first change its BGP

implementation to mark certain inputs as symbolic. We

choose to treat UPDATE messages as the basis to derive

new inputs during exploration. In BGP, UPDATE mes-

sages are the main drivers for state change while the other

state changing messages are only responsible for estab-

lishing or tearing down peerings and we leave them for

future work.

A simple approach would be to mark an entire UP-

DATE message as symbolic. However, this has the ef-

fect of causing Oasis to produce a large variety of in-

valid messages that simply exercise the message pars-

ing code3. This is undesirable for us because we want

to explore node actions, and so we need to go deeper

in the message processing code. As the format of BGP

messages is well-defined in the RFC [20], we selectively

define as symbolic small-sized inputs that directly de-

rive from the message. For instance, the Network Layer

Reachability Info (NLRI) region of the message con-

tains the announced routes with their respective netmask

lengths. We mark these as symbolic. An UPDATE mes-

sage also typically carries multiple path attributes each of

which is encoded as a type, length, and value fields that

can also be marked symbolic. However, one needs to be

careful that the symbolic length matches the actual length

of the value field and that its semantic is consistent with

the attribute type; otherwise the message is invalid and

of no utility. Note that this approach is very effective in

reducing the space of exploration because the produced

messages are always syntactically valid.

In practice, this choice allows DiCE to construct in-

puts that exercise BGP behavior in two dimensions: the

first due to BIRD’s code implementing BGP, the second

as the result of the particular configuration currently in

use. This is because the source code instrumentation en-

compasses the BIRD’s configuration interpreter and so

allows Oasis to record constraints for the interpreted con-

figuration. Therefore, the explored execution paths are

comprehensive of both code and configuration. Finally,

to enable Oasis to perform path exploration of BIRD’s

code, we handle the well-known cases that are difficult

or impossible to handle in symbolic execution. For ex-

ample, we avoid recording constraints that result from

applying hash functions, as they cannot be reversed.

We make a second change to BIRD for taking a check-

point. We implement this procedure by simply using the

fork system call. This way of checkpointing allows

us to create a large number of checkpoints with a small

memory footprint. We are careful to isolate the forked

process from its parent by closing the open sockets.

4 Evaluation

We use a 2.6 GHz 48-core machine with 64 GB of RAM,

running Linux 2.6.30. Using virtual interfaces and multi-

ple BIRD router instances, we install the 3-router topol-

ogy shown in Figure 2. DiCE runs in the Provider’s

router. The DiCE-enabled router loads 319,355 prefixes

from the “rest of the Internet” where we replay a BGP

trace obtained from RouteViews (a full dump plus 15-

min updates trace from route-views.eqix at April 1, 2010,

17:28 UTC). To be able to detect route leaks, we con-

3Which ought to be correct and could anyway be tested with a sym-

bolic execution engine that targets single-machine code.
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Figure 2: The experimental topology.

figure a partially correct route filtering. Customer route

filtering happens in the provider and is a best common

practice currently adopted by several large ISPs to de-

fend against BGP prefix hijacking.

4.1 Performance impact

Here we provide a summary of the micro-benchmarks

we run to understand how much DiCE impacts memory

and CPU usage during exploration.

Memory overhead. We perform measurements that

quantify the memory overhead on a BIRD router that

has a full routing table loaded. We then run the ex-

ploration while the routers processing a 15 minute trace

replay of BGP messages. The checkpoint process has

3.45% unique memory pages. The processes forked for

exploring from the checkpoint process consume on aver-

age 36.93% pages more (maximum of 39%).

CPU/performance. We use the number of BGP update

messages the DiCE-enabled router handles per second

as a measure of how much the performance is affected

while running exploration. The BIRD processes are con-

figured to run on separate CPU cores, with the explorer

having to share the single CPU core with its checkpoints

that are used during exploration.

Under full load (running the exploration while load-

ing the routing table), the BIRD process manages 13.9

updates per second. Without exploration, in the same in-

terval of time during the trace replay, it is handling 15.1

updates per second. Thus, the performance impact even

in this most stressful case is still small, namely 8%.

In a different, more realistic scenario, we run the ex-

ploration a few minutes inside the replay of a real-time

trace of 15 min (after the full routing table was loaded).

In this case the difference is negligible, with the BIRD

process managing 0.272 queries per second during ex-

ploration and 0.287 when free to use the full CPU core.

4.2 Detecting route leaks

In a highly publicized router misconfiguration incident,

Pakistan Telecom (an ISP) managed to divert to itself and

drop the vast majority of traffic directed toward YouTube,

the popular video-on-demand website. Consequently,

this important service was unavailable for almost two

hours [2]. In this particular case of BGP misconfigura-

tion called prefix hijacking, there were two compounded

errors that caused the fault. First, Pakistan Telecom an-

nounced a route that it had only intended to blackhole

(i.e., make YouTube unavailable to Pakistani residents).

Second, PCCW, the upstream provider for Pakistan Tele-

com, did not have filters installed to limit the spreading

of this announcement.

To replicate the IP prefix hijacking problem in our

testbed, we misconfigured customer route filtering at the

Provider AS. That is, its policy either fails to filter cus-

tomer routes or has erroneous filters. Then, DiCE lo-

cally exercises all possible execution paths, which also

include the “if” statements in the configured filters. For

each exploratory message, we check whether the an-

nounced route (as determined by Oasis’s manipulation

of the NLRI) is accepted, and in this case we detect a

potential hijack if that route overrides the origin AS of a

route already in the routing table prior to starting explo-

ration4. Certain prefixes are “hijackable” by nature, e.g.,

those used for IP anycast, and would appear as false pos-

itives. DiCE can simply filter these out once it is made

aware of the IP anycast address space.

The benefit from running DiCE for a network operator

is significant, as DiCE clearly states which prefix ranges

can be leaked. In the case of YouTube hijacking, Pak-

istan’s upstream provider would have been able to install

a correct filter.

5 Related work

CrystalBall [21], and MODIST [22] represent the state-

of-the-art in model checking distributed system imple-

mentations. CrystalBall [21] proactively predicts incon-

sistencies that can occur in a running distributed system

due to unknown programming errors, and effectively pre-

vents them. MODIST [22] is capable of model checking

unmodified distributed systems.

Symbolic [8, 13] and concolic execution [11, 7] are

techniques for achieving complete coverage of possi-

ble code paths and are effective in discovering bugs for

single-machine code. In DiCE, we leverage concolic ex-

ecution as the base mechanism for exploring distributed

system states starting from covering possible node ac-

tions and ultimately judge their system-wide impact.

Collaboration among a program’s or a system’s stake-

holders has been used in similar contexts. For example,

Liblit et al. [15] proposed an approach that infers bugs

by gathering information from the program’s users. A

4This assumes that the existing routes are trustworthy.
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sampling technique is used to maintain a low instrumen-

tation overhead. Orso et al. [19] suggested an approach

for continuously analyzing deployed software with mini-

mal instrumentation with the goal of improving software

quality. In the context of collaborative security, Locasto

et al. [16] proposed that members of an application com-

munity share the burden of monitoring for software flaws

and attacks, and notify the rest of the community when

such are detected.

Nagaraja et al. [17] focused on operator mistakes in

Internet services and argued for the creation of an on-

line validation environment to be used to check operator

actions before they are made visible. We consider their

approach complementary to DiCE, in that our approach

could be extended to explore system behavior under spe-

cific operator actions before they are introduced in the

running system. In the case of a single ISP’s routers,

Alimi et al. [4] proposed to install an alternative config-

uration with which network operators can test proposed

changes before committing them to the production net-

work. Feamster et al. [12] demonstrated the effective-

ness of static analysis to look for faults in the set of router

configurations, but cannot check live node states.

6 Conclusions

In this paper we argued for leveraging the increases

in computational power and bandwidth to make feder-

ated and heterogeneous distributed systems more reli-

able. We presented a preliminary design of DiCE, a sys-

tem that systematically exercises node behavior with the

goal of ultimately checking the system-wide impact of

each node behavior. We described our experience in in-

tegrating a path exploration engine with an open-source

BGP router written in C. We also outlined the challenges

in extending this kind of online testing to reach across

the network. Finally, we demonstrated our prototype’s

ability to detect BGP route leaks - an important class of

configuration errors that plagues the Internet.
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