
Fault Prediction in Distributed Systems Gone Wild

Marco Canini, Dejan Novaković, Vojin Jovanović, and Dejan Kostić
Networked Systems Laboratory

School of Computer and Communication Sciences, EPFL, Switzerland
firstname.lastname@epfl.ch

ABSTRACT

We consider the problem of predicting faults in deployed, large-
scale distributed systems that are heterogeneous and federated.
Motivated by the importance of ensuring reliability of the services
these systems provide, we argue that the key step in making these
systems reliable is the need to automatically predict faults. For
example, doing so is vital for avoiding Internet-wide outages that
occur due to programming errors or misconfigurations.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; H.4.3 [Information Systems Applications]: Communica-
tions Applications

General Terms

Reliability

Keywords

Fault prediction, Federated systems, Heterogeneous systems,
Shadow snapshot, Spatial and temporal awareness, BGP

1. INTRODUCTION
Large-scale distributed systems are already at the foundation of

today’s Internet services and continue to grow in popularity and
importance. However, making large-scale distributed systems reli-
able is a notorious challenge. Moreover, many successful systems
become heterogeneous due to the creation of multiple implementa-
tions and evolve into multi-provider distributed systems as a result
of deployment in the wide-area network with several federated ad-
ministrative domains.
Recent research efforts have focused on finding bugs in dis-

tributed systems by applying model checking [15, 22, 23] or sym-
bolic execution [20] to explore a large number of potential states.
We argue that making heterogeneous, federated distributed systems
reliable is even more challenging because (i) the source code of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LADIS ’10 Zürich, Switzerland
Copyright 2010 ACM 978-1-4503-0406-1 ...$10.00.

every node may not be readily available for testing and (ii) com-
petitive concerns are likely to induce individual providers to keep
private much of their current state and configuration.

Examples of systems of such nature encompass inter-domain
routing, electronic mail, peer-to-peer content distribution [11], con-
tent and resource peering [5, 12]. We believe that the rapid evolu-
tion of cloud computing will further foster the emergence of new
such systems1.

Motivated by the importance of ensuring dependability of long-
running systems that are federated and heterogeneous, we argue for
the need to predict faults and assess their impact as this is the cru-
cial step in being able to guard against important classes of faults.
A key insight in doing so is that nodes need to become spatially
and temporally aware of the consequences of local actions on their
neighborhood. We propose to achieve spatial awareness by creat-
ing a consistent, shadow snapshot, i.e., a distributed snapshot of the
system taken from the current live state in which nodes are allowed
to communicate with each other in isolation from the running en-
vironment, while respecting the node trust boundaries. Then, we
achieve temporal awareness by subjecting the system snapshot to
a large number of possible scenarios created by systematically ex-
ploring the potential behavior of a node and judging the wider im-
pact of its actions. Finally, we predict the aggregate future behavior
across multiple nodes by checking the status of safety properties
and system invariants in the shadow snapshots. This approach is
illustrated in Figure 1.

In this context, by fault prediction we mean to detect possible se-
quences of actions which reach states that present inconsistencies
that can lead to failures. As these might actually never happen, our
prediction is loose with respect to time in that it is not associated to
a time window during which the failures could occur. For a thor-
ough discussion on failure prediction we refer the reader to [19].
According to literature [6], faults are the adjudged or hypothesized
cause of an error. A failure refers to misbehavior that can be ob-
served by the user. Given that we are exploring possible actions,
these include faults. Therefore, because we want to avoid failures,
i.e., prevent faults that have a visible erroneous state, we refer to
our approach as fault prediction.

Based on this approach, we are building a prototype which is
already successful at predicting certain operator mistakes in BGP
router configurations.

With this paper we solicit discussions around the key insights of
making distributed systems reliable.

The rest of the paper is organized as follows. In Section 2 we mo-
tivate the importance of predicting faults. Section 3 presents a num-

1For instance, Google has opened to third parties the Google Wave
Federation Protocol promoting the creation of interoperable wave
providers. http://www.waveprotocol.org

T
im

e

Explore system behavior

Explore shadow snapshot 1

Explore shadow snapshot n

L
iv

e
 s

y
s
te

m

Figure 1: Predicting faults by achieving spatial and tempo-

ral awareness. Node behavior is systematically explored and

checked over isolated shadow snapshots.

ber of challenges in predicting faults in federated, heterogeneous
distributed system. In Section 4 we elaborate on our approach to
achieve fault prediction. Finally, Section 5 discusses related work
and Section 6 offers concluding remarks and sets the goal for future
work.

2. MOTIVATION
The nature of distributed systems, in which the aggregate behav-

ior is the result of interleaved actions of multiple nodes, makes it
impossible to check and debug their code in isolation as well as
to fully comprehend the overall impact of local actions. Consid-
ering the example of inter-domain routing, a BGP session reset in
response to a syntactically valid, but semantically useless route an-
nouncement might be a perfectly good way of handling of faults for
a single router. However, when it is coupled with a large number
of routers that propagate the potential fault (because they do not
process the update in sufficient detail), the overall effect is a large
fraction of the routers that are continuously resetting and restoring
sessions. The resulting high update processing rate that is reminis-
cent of emergent behavior [18] causes a performance and reliability
problem [4].
Further, the unanticipated interaction of nodes under seemingly

valid configuration changes can have a profound effect. For exam-
ple, an ISP could use routing policies that lead to divergent routing
or have detrimental effect. This was witnessed in a recent episode
when Pakistan Telecom mistakenly managed to hijack the vast ma-
jority of traffic directed toward YouTube for more than an hour [3].
But because at the core of ISPs profitability is the common business
practice of keeping most of the inter-domain policies and intra-
domain information private, it would not be possible to convince
them to verify suitably defined global invariants even though ubiq-
uitous Internet connectivity is at stake.
Lastly, the fact that a majority of the deployed routers comes

from only a handful of vendors [2] makes a large fraction of the
Internet susceptible to a single programming error. A malicious
packet could be engineered to take down a large fraction of the
Internet [1].
Given the importance of the services that distributed systems

provide, we believe that the overarching goal of keeping long-
running federated distributed systems functioning properly is a sig-

nificant incentive for the involved providers to become mutually
interested in predicting potential faults. However, this entails a
number of challenges that we discuss in the next section.

3. CHALLENGES

Heterogeneity.
Distributed systems that are widely deployed are often successful

because of the open standards and well-defined interfaces that per-
mit multiple implementations. Further, even the software deployed
by the same vendor has multiple versions and patch revisions due
to the difficulty of instantaneously upgrading all nodes. Moreover,
heterogeneity arises from the lack of global coordination in sys-
tems operated under multiple administrative domains. The result-
ing heterogeneity creates a problem for fault prediction because it
is difficult or impossible to have the source (or even binary) code
for all nodes that is required to achieve spatial and temporal aware-
ness in existing approaches [22]. Thus, the approach should be able
to operate using only the existing interfaces.

Hidden internal state/configuration.
Despite existing business relationships among providers moti-

vates both sides to predict faults, the federated nature of large-scale
distributed systems translates to the desire of nodes to keep a large
portion of their state and configuration that captures business prac-
tices private. This hinders the ability of external entities to identify
problems with a node’s configuration or software. A solution in
this space should only use the well-defined interface and ideally
leak no confidential information. It is only in this case that the dis-
tributed system operators would have the incentive to participate in
the protocol and increase overall system reliability.

Incremental deployment.
While attempting to redesign the protocols and the programming

interfaces, a solution that has any chance of success has to be in-
crementally deployable. This means that the approach should not
require changes to the existing protocol messages. Also, it should
not pose unnecessary requirements on the programming interfaces
or require intrusive changes to the existing systems.

Short running time.
The approach should be able to explore distributed system state

during the short quiescent periods. In addition, it should be able
to predict potential faults in a timeframe that is short enough for
the operators to take preventive measures or the system to auto-
matically adapt. However, a definite trade-off exists between ex-
ploration speed and bandwidth consumed. Exploring systems that
have a large amount of traffic will require managing the bandwidth
used for exploration so that the system performance is not degraded
to undesired levels.

Coverage.
Ideally, all code paths or possible states should be explored. This

task is difficult even for strictly single-machine software due to the
exponential number of paths or states. A typical cause of the ex-
cessive number of potential paths is dealing with large inputs [9]
(e.g., configuration files). Given the necessity to quickly predict
faults in a running system, it becomes important to significantly
limit the space that is being searched so that the running time is not
prohibitively long. Ideally, the approach should be able to automat-
ically infer message handlers that perform key state transformation
and should make use of ad-hoc heuristics which can bias state space

exploration toward states that are more likely to expose faults.

Long running times/large inputs.
The deployed systems we are interested in will potentially be

running for months without restarting. This means that the inputs
to the system will be long, which further makes achieving path ex-
ploration and good coverage difficult.

Scalability.
While the approach would ideally predict system behavior as a

whole, doing so has scalability problems of its own. Thus, it is
important to devise techniques that work with a constrained number
of nodes.

False positives/negatives.
As with any approach that performs fault detection and predic-

tion, false positives and negatives represent a potential issue. False
negatives can occur if the properties that are checked for are not ca-
pable of discerning the faulty state. Regarding the false positives,
live execution over the shadow snapshot is evidence of the behav-
ior that is the result of processing a particular input. However, it is
challenging to ensure that the properties themselves are defined in
a way that avoids false positives. Also, it is not possible to detect
faults that are not checked for. However, automatically inferring
system invariants is a substantial challenge per-se [21].
Finally, we note that extrapolating from local to global effects is

notoriously difficult and a potential source for false positives. On
the other hand, one can leverage specific designs of distributed sys-
tems to observe and generalize about faults observed in small set-
tings. For example, DHT nodes typically maintain log(N) neigh-
bors and problems manifest at that level; whereas in BGP, be-
cause global connectivity necessitates that route updates reach ev-
ery router, faults observed locally will propagate at the global level,
likely having effects similar to the local ones.

Snapshotting.
Taking snapshots of a large-scale system can be challenging. To

mitigate the resource requirements, fault prediction would make
use of resources that are underutilized when the system is not un-
der high load. However, because the snapshot is distributed due to
privacy requirements (i.e., each node creates its own checkpoint),
the cost of the snapshot can scale with the number of participants.
Further, it is important to control how much time it takes to cre-
ate a snapshot. Two main factors have an influence on it: (i) the
propagation delay of the messages that causes each node to take a
checkpoint, and (ii) the technique used by each node to actually
take the checkpoint.
Also, as a consistent snapshot is desired, the time to generate the

snapshot is affected by the message passing strategy of the specific
distributed system. An additional challenge is that the frequency
at which new snapshots are taken needs to be adapted to how fre-
quently the important pieces of the whole system state change. Sac-
rificing exploring at sufficient depth the past snapshot so that the
most current snapshot can be explored would potentially increase
the number of false positives. A key question is what are the faults
that can be predicted with the current snapshot that could not be
predicted with the previous snapshots. If these are numerous and
likely to occur, snapshotting ought to be sufficiently frequent. Fi-
nally, as for what state needs to be preserved, our approach requires
access to all the state required to run the programs symbolically.
We find the system call fork() a good technique to make a cheap
copy of the process memory.

4. PREDICTING FAULTS

Types of faults.
Among the type of faults that can be detected in distributed sys-

tems we target three specific categories: (i) insidious programming
errors, (ii) misconfigurations (local), and (iii) conflicting objec-
tives of individual nodes (system-wide misconfiguration).

Spatial awareness.
Because of the heterogeneous and confidential nature of the sys-

tem states we adopt an approach that respects the node trust bound-
aries. We let the nodes become spatially aware by establishing a
shadow snapshot taken from the current live state. The snapshot
itself is distributed and each node is allowed to exchange messages
with its neighbors through shadow connections.

Temporal awareness.
In order to predict faults, nodes need to achieve temporal aware-

ness. The key idea is to subject a node to all possible inputs in a way
that locally exercises all execution paths and, through shadow mes-
saging with its neighbors, leads to potential, valid system states.
The exploration runs online, alongside the deployed system, off the
critical execution path. Such exploration draws inspiration from
the principle of symbolic execution which is able to systematically
explore all possible code paths in a program [9]. Similarly, the
proposed approach relies on collecting the constraints that describe
which input values can lead to a particular point in the code. Then,
it queries a satisfiability solver to determine the values which can
take to different paths and executes with those inputs. Each exe-
cution continues to collect constraints based on the newly explored
paths which enter the composite set of constraints. However, this
faces the problem of exponential explosion in the number of pos-
sible paths. In addition, having a long running system means that
the inputs it has accumulated over time are large. Therefore, we
envision that the exploring node would start the exploration from
its current, live state to quickly reach possible faulty states.

Checking properties.
Using a set of properties that capture safety among a set of nodes

would enable finding faults during exploration. In such a simple
scheme, each property can be formulated as a predicate on the state
of a single node, which effectively inhibits the possibility of leaking
private information. However, sometimes system behavior can not
be checked against individual node’s states. To allow predicting
faults in this conditions, we would want our approach to support
safety invariants that check on state spanning multiple nodes. At
the same time this contrasts with our desire of avoiding leakage of
confidential information.

We propose to cast these invariants into protocols which can be
solved using SMPC (Secure Multi-Party Computation) which prov-
ably does not leak private information [16]. Although it is challeng-
ing to build SMPC solutions that are practical in terms of compu-
tation and communication cost, recent work has optimized several
operations which made SMPC suitable for processing high volume
data in near real-time [7] which we find promising for our work.

5. RELATEDWORK
The two fundamental techniques that can be used to predict fu-

ture system behavior by operating on the source code are model
checking and symbolic execution.

Model checking involves exploring system states by executing
enabled actions (e.g., timers, message handlers, local actions) in

each encountered state. For distributed systems, the aggregate state
is composed of the states of participating nodes. Model checkers
also require a harness that can introduce faults, e.g., broken connec-
tions, node failures, reordered messages, etc. MaceMC [15] runs
state space exploration locally, on a set of state machines initial-
ized from initial state, while CrystalBall [22] instantiates the state
machines from live, consistent node checkpoints. MaceMC can
determine safety and liveness violations spanning multiple nodes
and it was used to find bugs in systems implemented in the Mace
[14] distributed systems framework. CrystalBall [22] goes one step
further in that it can proactively predict inconsistencies that can oc-
cur in a (Mace-based) running distributed system due to unknown
programming errors, and effectively prevent them. MODIST [23]
goes one step further than MaceMC in that it is capable of model
checking unmodified distributed systems. One could potentially
use MODIST to orchestrate state space exploration across a cluster
of machines in an isolated (non-deployed) scenario. A general is-
sue with model checking techniques is the exponentially large set
of potential system states.
Symbolic [9, 10, 13], and the related concolic [8, 17], execu-

tion are techniques for systematically exploring the code paths of a
given system. The approaches in this space [9, 8] use a constraint
solver to force code executions to go down a particular branch. As
such, these approaches typically do not require a testing harness
when finding bugs in single machine code. Path explosion is the
key problem faced by symbolic and concolic execution engines.
To facilitate bug finding in sensor-net code, KleeNet [20] builds

a test harness that accommodates messaging and fault injection on
top of the Klee symbolic engine [9]. To search for bugs, KleeNet
arranges for state-space exploration among the set of TinyOs nodes
running in isolation on one machine, prior to deployment.
Our work goes beyond the state-of-the-art in that it predicts faults

live, in the challenging conditions encountered during widespread
system deployment, e.g., the federated and heterogeneous nature of
these environments.

6. FUTUREWORK
It is notoriously difficult to make distributed systems reliable and

a key step in doing so is the ability to automatically predict faults.
In this paper, we argued that this task becomes even harder in the
case of the widely-deployed systems that end up being heteroge-
neous and federated. We described a lengthy but likely incom-
plete set of entailed challenges and proposed what we regard as the
keystone principles in tackling this problem: achieving spatial and
temporal awareness at the nodes in order to predict future aggregate
system behavior, and in turn, faults.
Our future research goals are geared toward creating a frame-

work that encompasses all the merits of the works closely related
to ours [15, 22, 23, 20] and additionally deals with several impor-
tant aspects in predicting faults for long-running, heterogeneous
and federated distributed systems, including: 1) uncovering faults
due to inputs that are different than those fed by the model checking
harness, 2) executing without requiring to create and incorporated
a fault model into the state-space exploration algorithm, 3) explor-
ing system behavior starting from live state, which is crucial for
long-running systems, 4) avoiding leaking confidential information
in the messages that are being transmitted, and 5) incorporating the
intrinsic heterogeneity of the system. We are building a prototype
which is already successful at predicting certain operator mistakes
in BGP router configurations.

Acknowledgments

Marco Canini was funded in part by a grant from the Hasler foun-
dation (grant 2103).

7. REFERENCES

[1] How To Build A Cybernuke.
http://www.renesys.com/blog/2010/04/

how-to-build-a-cybernuke.shtml.

[2] Juniper seen regaining core router share in 2008.
http://www.reuters.com/article/

idUSN1333533920070613.

[3] Pakistan hijacks YouTube.
http://www.renesys.com/blog/2008/02/

pakistan_hijacks_youtube_1.shtml.

[4] Staring Into The Gorge: Router Exploits.
http://www.renesys.com/blog/2009/08/

staring-into-the-gorge.shtml.

[5] Lisa Amini, Anees Shaikh, and Henning Schulzrinne.
Effective Peering for Multi-provider Content Delivery
Services. In Proceedings of the twenty-third Annual Joint
Conference of the IEEE Computer and Communications

Societies (INFOCOM ’04), pages 850–861, Hong Kong,
March 2004.

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and
Carl Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on

Dependable and Secure Computing, 1(1):11–33, January
2004.

[7] Martin Burkhart, Mario Strasser, Dilip Many, and
Xenofontas Dimitropoulos. SEPIA: Privacy-Preserving
Aggregation of Multi-Domain Network Events and
Statistics. In Proceedings of the 19th USENIX Security

Symposium, Washington, DC, August 2010.

[8] Jacob Burnim and Koushik Sen. Heuristics for Scalable
Dynamic Test Generation. Technical Report
UCB/EECS-2008-123, EECS Department, University of
California, Berkeley, Sep 2008.

[9] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee:
Unassisted and automatic generation of high-coverage tests
for complex systems programs. In Proceedings of the 8th
USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’08), pages 209–224, San Diego, CA,
December 2008.

[10] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L.
Dill, and Dawson R. Engler. EXE: Automatically Generating
Inputs of Death. In Proceedings of the 13th ACM Conference

on Computer and Communications Security (CCS ’06),
Alexandria, Virginia, USA, 2006.

[11] Bram Cohen. Incentives Build Robustness in BitTorrent. In
Proceedings of the First Workshop on the Economics of

Peer-to-Peer Systems, Berkeley, CA, June 2003.

[12] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and
Amin Vahdat. SHARP: An Architecture for Secure Resource
Peering. In Proceedings of the 19th ACM Symposium on

Operating System Principles (SOSP ’03), Bolton Landing,
NY, October 2003.

[13] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART:
Directed Automated Random Testing. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’05), New
York, NY, USA, 2005.

[14] Charles Killian, James W. Anderson, Ryan Braud, Ranjit
Jhala, and Amin Vahdat. Mace: Language Support for
Building Distributed Systems. In Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’07), San Diego, CA,
June 2007.

[15] Charles E. Killian, James W. Anderson, Ranjit Jhala, and
Amin Vahdat. Life, Death, and the Critical Transition:
Finding Liveness Bugs in Systems Code. In Proceedings of
the 4th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’07), Cambridge, MA, April
2007.

[16] Sridhar Machiraju and Randy H. Katz. Verifying Global
Invariants in MultiProvider Distributed Systems. In
Proceedings of the Third Workshop on Hot Topics in

Networks (HotNets-III), San Diego, CA, November 2004.

[17] Rupak Majumdar and Koushik Sen. Hybrid Concolic
Testing. In Proceedings of the 29th International Conference
on Software Engineering (ICSE ’07), pages 416–426,
Minneapolis, MN, 2007.

[18] Jeffrey C. Mogul. Emergent (Mis)behavior vs. Complex
Software Systems. In Proceedings of the 2006 EuroSys
conference, Leuven, Belgium, 2006.

[19] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of
online failure prediction methods. ACM Computing Surveys,
42(3):1–42, March 2010.

[20] Raimondas Sasnauskas, Olaf Landsiedel,
Muhammad Hamad Alizai, Carsten Weise, Stefan
Kowalewski, and Klaus Wehrle. KleeNet: Discovering
Insidious Interaction Bugs in Wireless Sensor Networks
Before Deployment. In Proceedings of the 9th ACM/IEEE

International Conference on Information Processing in

Sensor Networks (IPSN ’10), pages 186–196, Stockholm,
Sweden, 2010.

[21] Maysam Yabandeh, Abhishek Anand, Marco Canini, and
Dejan Kostic. Almost-Invariants: From Bugs in Distributed
Systems to Invariants. Technical Report
NSL-REPORT-2009-007, EPFL, 2009.

[22] Maysam Yabandeh, Nikola Knežević, Dejan Kostić, and
Viktor Kuncak. Crystalball: Predicting and preventing
inconsistencies in deployed distributed systems. In
Proceedings of the 6th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’09), Boston,
MA, April 2009.

[23] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu,
Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao
Zhang, and Lidong Zhou. MODIST: Transparent Model
Checking of Unmodified Distributed Systems. In
Proceedings of the 6th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’09), Boston,
MA, April 2009.

