
ESPRES: Transparent SDN Update Scheduling

Peter Perešíni†, Maciej Kuźniar†, Marco Canini‡, Dejan Kostić•∗
†EPFL ‡Université catholique de Louvain •KTH Royal Institute of Technology

†<name.surname>@epfl.ch ‡marco.canini@uclouvain.be •dmk@kth.se

ABSTRACT
Network forwarding state undergoes frequent changes, in
batches of forwarding rule modifications at multiple switches.
Installing or modifying a large number of rules is time con-
suming given the performance limits of current programmable
switches, which are also due to economical factors in addi-
tion to technological ones.

In this paper, we observe that a large network-state up-
date typically consists of a set of sub-updates that are in-
dependent of one another w.r.t. the traffic they affect, and
hence sub-updates can be installed in parallel, in any order.
Leveraging this observation, we treat update installation as
a scheduling problem and design ESPRES, a runtime mech-
anism that rate-limits and reorders updates to fully utilize
processing capacities of switches without overloading them.
Our early results show that compared to using no scheduler,
our schemes yield 2.17-3.88 times quicker sub-update com-
pletion time for 20th percentile of sub-updates and 1.27-1.57
times quicker for 50th percentile.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems

Keywords
Software-Defined Networking; Performance; Update schedul-
ing

1. INTRODUCTION
Changes to network forwarding state are frequent—new

network users must be accommodated, network policies change,
routing is engineered to adapt to traffic conditions, virtual
machines (VMs) are constantly spun up, torn down or moved
in the cloud, maintenance events and failures cause topol-
ogy changes, etc. To ensure that updates complete with

∗Work done when the author was with IMDEA Networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620747 .

minimum disruption, recent works [6, 11, 13] focused on the
data plane consistency guarantees that can be provided as
a network transitions from one state to another.

However, very little consideration has been given so far
to another important problem: optimizing the installation
of forwarding rules to allow a vast fraction of flows to be
processed according to the updated network state as soon as
possible1. As Software Defined Networking (SDN) substan-
tially enhances network programmability, we expect that the
rate of network updates will increase even further. For ex-
ample, tight flow packing to achieve maximum link utiliza-
tion in Google’s B4 [5] can require frequent changes. On
the other hand, installing or modifying a large number of
rules across a pool of (potentially heterogeneous) switches
can be a time-consuming operation due to the substantial
latencies incurred in processing rule operations on the switch
and updating switch chips accordingly. These latencies are
due to hard-to-overcome technological as well as economical
factors [2].

In this paper, we propose to compensate these inefficien-
cies by tackling update installation as the problem of schedul-
ing which operations are going to be sent to which switch at
any given moment. Solving this difficult scheduling problem
is important because updates are often on the critical path,
e.g., for implementing policy changes or service provisioning.
We present the initial design and preliminary evaluation of
ESPRES, a runtime mechanism that carefully plans the in-
stallation of individual updates and actively manages switch
message queues, while striving to fully utilize message pro-
cessing capacities of switches without overloading them. In
doing so, ESPRES leverages the observation that a large up-
date typically consists of a set of independent sub-updates,
and hence sub-updates can be installed in parallel, in any
order.

ESPRES introduces a per-switch virtual message queue
that is realized as the combination of the message queue on
the switch extended with a message queue maintained at
the controller. Our key insight is that this queue extension
enables ESPRES to continuously reassess at the controller
the order in which messages should be sent to switches, since
once the messages are queued at the switches they can no
longer be reordered with the current versions of OpenFlow
or similar protocols. ESPRES’ queue manager observes how
long each switch takes to execute rule operations, and care-
fully issues enough of them to keep the switch occupied with-
out excessively queuing messages there.

1Our initial motivation for the problem appeared in [12].

Network / Policy
Database

Update Plan
Generator

ESPRES

SDN
App

SDN
App

Switch Switch

Network
updates

Policy
changes

Data plane
commands +
dependencies

Data plane
commands

C
on

tr
ol

le
r

Figure 1: Position of
ESPRES in an SDN
architecture.

Network update
1

Network update
2

Flow 1

Flow 2

Flow 3

Flow 4

data plane
commands

sub-update

intra-update dependency

inter-update dependency

Figure 2: A key observa-
tion: network updates can
be broken down into inde-
pendent sub-updates.

At a high-level, ESPRES first groups all operations of an
update into sub-updates that affect different logical traffic
flows, and then schedules operations by ordering the sub-
updates. ESPRES aims to execute as many sub-updates
in parallel as possible while offering the ability to optimize
for different goals. For example, the goal of finishing flows
sooner is accomplished by choosing shorter updates first. On
the other hand, ESPRES can reduce rule overhead in the
switches by preferring sub-updates that remove rules first.

Throughout this paper, we assume an SDN controller ar-
chitecture consisting of two layers: the Network / Policy
Database and the Update Plan Generator . To a good extent,
this architecture is a simplification from existing SDN con-
trol plane proposals such as Onix [8] and ONOS [1]. SDN
applications interact with the controller through a north-
bound interface that allows them to programmatically alter
the network state via modifications to the Network / Policy
Database. Changes to the database are propagated to the
Update Plan Generator , a component that translates these
changes into actual commands affecting switch rules (here-
after rule operations) as well as a dependency graph (Fig. 2)
that describes the intra-update dependencies between opera-
tions [11]. Additionally, inter-update dependencies between
different network updates may exist. In a typical SDN stack,
an OpenFlow driver or similar component would then send
rule operations to switches based on the computed update
plan. As shown in Fig. 1, ESPRES operates below the Up-
date Plan Generator and subsumes this latter component.
ESPRES receives a stream of network updates and optimizes
the efficiency of rule installation by scheduling rule opera-
tions. Finally, ESPRES acknowledges all finished network
updates back to the Update Plan Generator .

Our early results show that compared to a no-scheduler
baseline, a simple ESPRES scheduler yields 2.17-3.88 times
quicker sub-update completion time for the 20th percentile of
sub-updates and 1.27-1.57 times quicker for 50th percentile.
Moreover, an ESPRES scheduling algorithm optimizing for
rule-space overhead causes only 3.5-17% overhead instead of
62% with no scheduler.

2. SCHEDULING WITH ESPRES
Our key observation is that an SDN update is typically

induced by one or more high-level events, such as e.g., traf-
fic engineering (TE) recomputations, VM migrations, and
topology or policy changes. Typically, these events result in

a batch-style update of forwarding state spanning multiple
switches. Importantly, a network update easily consists of
a set of sub-updates that are independent of one another,
that is, there are no rule installation dependencies between
rule operations corresponding to these sub-updates. For ex-
ample, each TE-affected flow can typically be shifted inde-
pendently of any other flow.2

Independence between sub-updates plays an important
role because any combination of independent sub-updates
can be applied in an arbitrary order, or even interleaved
in parallel, without introducing data plane inconsistencies
(e.g., causing a forwarding loop or a blackhole, imposing mu-
tually exclusive forwarding actions, or violating other safety
conditions [11]). Such independence is a great source of flex-
ibility for choosing an order in which rule operations and
whole sub-updates are applied. By leveraging such flexibil-
ity, ESPRES can optimize the network update installation
for a variety of goals.

However, to leverage all this flexibility in practice, ESPRES
faces the challenge of handling switches with different (and
variable) performance characteristics. This requires ESPRES
to be able to quickly compute the ordering of rule operations
and adapt it based on current conditions. This is a major
departure from previous schemes that work on coarser gran-
ularity (e.g., split an update into several rounds but do not
schedule within a round) in which the complete update in-
stallation is precomputed [6, 10]. As a result, our design
consists of two main components: (i) the Queue Manager,
which is responsible for keeping switch “service times” short,
and (ii) the Scheduler, which is responsible for choosing the
order in which rule operations are performed.

2.1 Managing switch command queues
A key to exploit all the available scheduling flexibility is

maintaining good switch responsiveness by actively manag-
ing their command queues. That is, instead of sending all
commands at once to a switch (and queuing them there with
no possibility for future reordering or cancellation), ESPRES
queues these commands at the controller and sends to the
switch only a small subset of them (Fig. 3a). Näıvely sending
all available commands to a switch fills up its queue, which
delays installation of some rule dependencies. Instead, when
the queue length is actively managed, ESPRES can decide
which commands are to be sent next according to a particu-
lar scheduling discipline (e.g., prefer rules from sub-updates
that already started).

Because sending rule operations to a switch is not an in-
stantaneous process, the Queue Manager needs to trade-off
queue length (queuing adds additional delay as well as limits
reordering possibilities) versus switch performance.

In particular, a very short queue length ensures low wait-
ing latency but causes low rule modification throughput,
whereas a very long queue provides full throughput at the
expense of rule operations being stuck in the back of the
queue for a long time. In our prototype, we use a simple
heuristic for queue management: our algorithm limits the
number of outstanding requests for each switch not to ex-
ceed a fixed threshold (5 in our experiments).3 We validate

2Even with congestion free-induced limitations, there are
solutions generating sets of independent sub-updates [10].
3 Because OpenFlow lacks positive acknowledgments, we
limit outstanding requests by using barriers and tracking

Switch queue In-ESPRES queue

● fixed order
● capped length

● reorderable

Active Queue Management

(a) Active queue management
helps with queue re-ordering.

Certain sub-updates
finish sooner

Sub-update completion
hindered by last operation

Arbitrary installation
order

Grouping by
sub-update

Switch 1:

Switch 2:

Time Time

(b) Grouping rules by sub-update helps finishing
part of a network update sooner.

TimeTime

4 + 5
avg = 4.5

1 + 5
avg = 3

Schedule 1 Schedule 2

(c) Ordering sub-updates by size can
speed up average sub-update installation
time.

Figure 3: Overview of techniques ESPRES uses to schedule rule operations.

our decision for using just a simple threshold as well as the
trade-off between latency and performance in Section 3.

2.2 Scheduling rule operations
When the Queue Manager considers a particular switch

command queue to be short, it notifies the Scheduler. Then,
the Scheduler selects which rule operation should be next
sent to that switch. A baseline solution is to disregard the
active queue management and scheduling altogether, and
send rule operations as soon as all their dependencies are
met. Such baseline solution has however a major draw-
back. Observer that each traffic flow starts following the
new desired forwarding configuration only after all rules cor-
responding to the particular network flow are installed, i.e.,
the sub-update for that flow completes. Therefore, if rule
operations are ordered in an arbitrary (random) way, sub-
update completion will be frequently hindered by the last
rule operation. Instead, grouping rule operations by sub-
update helps finishing parts of the network update sooner as
illustrated in Fig. 3b.

2.2.1 ESPRES schedulers
We base our schedulers on the observation that it is ben-

eficial to install all rule operations of a given sub-update at
roughly the same time. Thus, we design ESPRES schedulers
as sub-update schedulers — they decide on the preferred or-
der in which the sub-updates should be installed. Note that
this is not a strict sequential ordering — ESPRES can send
rule operations from any (even the last) sub-update as long
as previous sub-updates do not have rule operations which
are ready to be sent on a per-switch basis. A rule operation
is ready if all of its dependencies are already installed.
Preferred order scheduler. The basic version of the
scheduler always sends the first ready rule operation, ac-
cording to the preferred order (we discuss how this order
is derived in the next section). That is, each time the
Queue Manager informs the Preferred order scheduler that
(some) switches are ready, the scheduler goes through the
sub-updates in the current order, inspects each sub-update
and sends out any ready rule operations. The scheduler
ends iterating through sub-updates when the end of the sub-
update list is reached or when there is no more switch queue
space, whichever comes first.

the number of sent BarrierRequest messages and received
BarrierReply messages.

Batch-ready scheduler. We observe that we can further
improve the Preferred order scheduler performance by us-
ing the following heuristic. Instead of sending any ready
rule operation across sub-updates as soon as a switch is
available, we can synchronize ready operations within a sub-
update and send them at the same time. The Batch-ready
scheduler thus iterates through the sub-update list similarly
to Preferred order scheduler but sends sub-update ready
rule operations as a batch and only when all correspond-
ing switches are available. This provides an effect similar to
gang scheduling [3], an operating systems scheduling concept
that enhances the performance of multi-threaded programs
by co-scheduling multiple threads of the same program at
the same time.

2.2.2 Ordering sub-updates
The preferred ordering in which sub-updates should be

installed plays an important role in the scheduling perfor-
mance. For example, if the goal is to finish updating the
majority of sub-updates in the network as soon as possi-
ble, we should order shorter sub-updates first similarly to
the shortest job first scheduling in the context of operating
systems (see Fig. 3c).

ESPRES supports a variety of preferred orderings. A
baseline is an arbitrary fixed order of sub-updates (e.g., sort
on sub-update identifier). ESPRES can also sort on the
sub-update size, priority (if given by the controller), or a
custom-defined order. Moreover, the preferred order is not
necessarily fixed throughout the whole update.

For instance, to support the goal of minimizing mid-update
rule overhead,4 ESPRES uses an estimate of the current
switch rule overhead to prefer updates that remove rules
from the currently most overloaded switches. In this case,
ESPRES periodically reorders all sub-updates according to
a penalty function after potentially installing a sub-update.
We define the penalty function as:∑

s∈switches

(
max(current ruless − targets, 0)

)2
where current ruless is the current number of rules in-
stalled at switch s, and targets is the maximum of rules
at s before the entire update starts (known by the con-
troller) and the number of rules after it ends, i.e., targets =
max(initials, initials + update deltas)

4Controllers using the two-phase consistent update [13] re-
quire keeping both old and new rules at the same time.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

1 2 3 4 5 10
 0
 5
 10
 15
 20
 25
 30

Pe
rfo

rm
an

ce
 [r

ul
e

op
s/

se
c]

R
eq

ue
st

 c
om

pl
et

io
n

tim
e

[m
s]

#Oustanding requests

Rule operation rate [rules/sec]
Average completion time [ms]

Figure 4: Performance of a limit-outstanding-requests queue
management on a Pica8 switch. Rule modification through-
put is constant for queue longer than 1.

flows 10 rules/s 100 rules/s 1000 rules/s
100 2.17x / 1.27x 2.17x / 1.27x 2.17x / 1.27x
1000 3.53x / 1.49x 3.53x / 1.49x 3.53x / 1.49x
5000 3.88x / 1.57x 3.88x / 1.57x 3.88x / 1.57x

Table 1: Sub-update finish time improvement (at 20th and
50th percentile) with ESPRES compared to no scheduler on
IBM topology. ESPRES helps for all update sizes, but the
improvement increases with the size. Switch speed has no
effect on the relative improvement.

3. EVALUATION
We implemented our ESPRES prototype as a Python pro-

gram on top of the POX OpenFlow controller platform. We
also developed a discrete event simulator to evaluate the
system. First, to validate the simulator, we run ESPRES
in an emulated Mininet environment using the reference
OpenFlow switches rate limited to 40 rule modifications/sec-
ond, which corresponds to existing hardware switches [4].
As the results in simulation and emulation are compara-
ble, we use the simulator in our experiments to fully control
all parameters. Further, unless specified otherwise, we set
the rule modification rate at switches to 1000 rules/second,
which is much more than current generation of OpenFlow
switches is capable of. Although fast switches are adversar-
ial to ESPRES, we choose to use such value to confirm that
ESPRES will be equally relevant in future deployments.

3.1 Active queue management
First, we explore how short the switch queue can be with-

out decreasing control plane performance. We design a bench-
mark where the controller maintains a fixed number of out-
standing requests per switch and measures the switch per-
formance. The controller pre-populates a switch flow table
with 500 initial rules and then repeatedly removes a random
rule and replaces it with a new one followed by a barrier re-
quest.

We run the benchmark on a Pica8 3290 switch (PicOS
2.0.4, OVS 1.10.0) and summarize the results in Fig. 4.
The main takeaway is that using a small number of out-
standing requests (e.g., two) does not decrease control plane
performance. Running the benchmark on an HP ProCurve
E5406zl, we observe that it requires a few more outstand-
ing requests, and we thus set the number of outstanding
requests in our experiments to 5 (to account for some vari-
ance in switch performance).

3.2 Intra-update scheduling
To show the scheduling benefits of ESPRES, we evaluate

it in three scenarios with different scheduling goals.

 0 0.1 0.2 0.3 0.4
Time [s]

IBM WAN topo

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 0 0.1 0.2 0.3 0.4
Time [s]

Small FatTree (k=4) topo

C
D

F
fin

is
he

d
flo

w
s

Optimal Batch-ready Preferred order No scheduler

Figure 5: When installing a batch of new flows, scheduling
reduces completion time for most of them.

Improving mean time to finish. We first focus on the
mean time to finish a sub-update. This is an important
metric when the controller is installing a batch of new flows
(e.g., spinning up a new VM) or repairing existing flows
after a topology change. In this experiment, ESPRES coor-
dinates installation of new sub-updates, each representing a
flow on a shortest path between two edge switches chosen at
random. Flows are installed in a per-packet consistent man-
ner [13], i.e., we use a two-phase update where the ingress
rule is installed only after all other rules are in place. We
run the experiment using various parameters, as discussed
below. Each run was repeated 3 times and we observed com-
parable results across runs; therefore, due to space limit, we
highlight a few major results.

Fig. 5 shows the CDF of flow installation time for 1000
flows in an IBM topology [7] with 18 switches (all switches
are edge switches) and a FatTree topology with 20 switches
(k = 4, 8 ToR switches are edge switches). Table 1 sum-
marizes results of experiments across a range of flows and
switch performance parameters.

Overall, the results show that significant benefits come
even from our simple scheduling algorithms. The Batch-
ready scheduler comes very close to an optimal schedule cal-
culated by an integer linear program,5 which has a high
run-time overhead of 10 minutes. Further, our algorithm
is 3.5 times better than not using a scheduler6 for 20th
percentile of flows, 1.5 times better for 50th percentile and
achieves equal total update time. Note that scheduling does
not introduce performance benefits in the 9x-percentiles of
flow installations, which correspond to the flows that are in-
stalled last. This is because these flows ultimately depend
on which bottleneck switch is last to finish with rule instal-
lations. Nonetheless, scheduling does not worsen the instal-
lation time of these flows. Moreover, as shown in Table 1,
increasing the switch rule installation speed does not affect
the scheduling benefits. The overall update time decreases
proportionally, but the benefits coming from ESPRES re-
main. Finally, the benefits of ESPRES is greater for bigger
updates when the scheduler has higher freedom to reorder
sub-updates.
Lowering mid-update switch rule overhead. In these
experiments, we assess rule overhead using a version of the

5We assume a priori known and constant switch perfor-
mance.
6 “No scheduler” is a scheduler that iterates over flows in
some predefined order and sends all ready operations to the
switch as soon as possible, ignoring any queue management.
We try with different flow orderings but the ordering itself
seems to have no major effect on the results.

hhhhhhhhhhhScheduler
Sub-updates

352 1074

per-switch overhead max avg max avg
No scheduler 55.4% 26.3% 62.3% 27.8%
Inc. consist. updates [6] 15.8% 15.0% 17.1% 8.7%
ESPRES 16.8% 5.7% 3.5% 1.3%

Table 2: Comparison of rule overhead when using two-phase
update methodology [13] to achieve consistency.

 0 0.1 0.2 0.3 0.4
Time [s]

IBM WAN topo

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 0 0.1 0.2 0.3 0.4
Time [s]

Small FatTree (k=4) topo

C
D

F
su

bu
pd

at
e

du
ra

tio
n

Batch-ready Preferred order No scheduler

Figure 6: CDF of individual sub-update durations. Schedul-
ing helps minimizing the possible disruption times.

scheduler that tries to minimize the mid-update switch rule
overhead.7

We design an experiment that resembles a TE recomputa-
tion in a FatTree topology with 20 switches. We first setup a
number of flows over arbitrary shortest paths between pairs
of ToR switches chosen at random. We consider both 500
and 1500 flows. Then, we compute new paths for all flows
by randomly choosing a new shortest paths for each flow.
In about 25% of cases the same path for a flow is chosen
and therefore the number of sub-updates is lower than the
number of flows (e.g., 352 and 1074). Finally, ESPRES in-
stalls all new flows in a consistent manner, i.e., we provide
dependencies between rule operations of the same flow as
a three stage update where we (i) add new rules, (ii) then
modify the “ingress” switch, i.e., the switch where the new
path diverges from the old one, (iii) delete old rules.

Table 2 summarizes our results. We observe that a näıve
update without a scheduler results in major maximum per-
switch overhead (up to around 60%), while both incremen-
tal consistent updates [6] configured to use 4 rounds and
ESPRES keep the overhead low (17% in the worst case).
Further, ESPRES outperforms incremental consistent up-
dates for larger updates because ESPRES reacts to current
switch conditions at run-time and interleaves rule installa-
tions and rule deletions from different sub-updates to lower
the overhead. We note that ESPRES is a best-effort ser-
vice and does not guarantee low worst-case overhead like
incremental consistent updates does. In the future, we plan
to explore the benefits of running ESPRES on top of incre-
mental consistent updates to bound the worst-case behavior
while maintaining the benefits of run-time information.
Minimizing sub-updates durations. We conclude the
evaluation of scheduling goals with an experiment measuring
the duration of individual sub-update installation times, i.e.,
the time taken to install a sub-update from start to finish, as
measured at the controller. We use the same setup as for the
mean time experiment. Results in Fig. 6 suggest that our
scheduler rapidly decreases the in-progress sub-update du-

7We calculate the per-switch overhead as in [6]: overhead
in percent = 100 ∗ (worst/base − 1) where worst is the
maximum number of rules during the update and base =
max(pre-update rule count, post-update rule count).

 0 0.2 0.4 0.6 0.8 1
Time [s]

IBM topo, 1000 new flows

RTT
0ms

100ms
200ms

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1
Time [s]

IBM topo, 2000 new flows

RTT
0ms

100ms
200msC

D
F

fin
is

he
d

flo
w

s

ESPRES + fix No scheduler ESPRES orig.

Figure 7: CDF of flow installation time as we vary the
controller-switch RTT.

rations for most sub-updates, while finishing the update at
the same time as the baseline case with no scheduling. This
reduction can be attributed to grouping operations per sub-
update and co-scheduling all operations at the same time.

3.3 ESPRES sensitivity to network latency
To check how our greedy scheduler performs when work-

ing with delayed information, we vary the controller-switch
round-trip-time (RTT) from 0 to 200ms. To avoid switch
underutilization, we adjust the number of outstanding re-
quests to cover at least RTT-worth of rule operations (e.g.,
2, 105 and 205 outstanding requests for 0ms, 100ms and
200ms, respectively.)

Understandably, the update time increases with higher
RTTs, as shown in Fig. 7. However, we also observe that
ESPRES performs worse than no scheduler for long RTTs
(e.g., the line marked with squares in the figure). An in-
vestigation revealed that our schedulers are too eager to fin-
ish the already-started sub-updates, which does not interact
well with the long latencies during the final phase of an up-
date as some sub-updates do not start until the very end
and then they have to wait long for their dependencies. In
particular, for each operation denote its depth as the maxi-
mum length of dependency chain from the operation to the
update end (depth is 1,2 or 3 in our experiments).

Assuming the same RTT between controller and all switches,
if an update contains an operation at depth d, the update
cannot finish sooner than in d×RTT . To fix the scheduler,
for each switch s and each depth d, we calculate pending(s, d)
as the count of all operations at depth d still not sent. Then
we calculate

Tmin(s, d) = d×RTT + pending(s, d)/rate(s)

and

TETA = max
s

(∑
d

pending(s, d)/rate(s)

)
If Tmin(s, d)×(1+ε) > TETA for some depth d, there is a risk
that an update would be delayed because of operations with
depth d (we use ε = 5% as a safety margin). In this case, we
force the scheduler to send to switch s only operations with
depth ≥ d, effectively starting new sub-updates instead of
finishing already started ones.

After fixing the scheduler to start sub-updates earlier if
some operations may wait too long because of dependencies,
the results improve. There are two main conclusions coming
from Fig. 7. First, the fixed scheduler performs much better
than baseline early during an update and stays no worse
than the baseline near the end. Second, the time when the

scheduler changes the strategy depends on the RTT, the
switch rule modification rate and the update size. Thus,
even if switches become faster, ESPRES will still be helpful
in the future because the updates are likely to grow and the
RTTs to decrease.

4. RELATED WORK
Reitblatt et al. [13] introduce the notion of consistent net-

work updates, and propose a two-phase update approach.
Katta et al. [6] reduce consistent updates’ rule overhead
in switches by operating in a set of rounds [6], albeit in-
creasing the overall update duration. zUpdate [10] performs
congestion-free updates using a set of carefully computed
steps. ESPRES improves upon these works by lowering the
time at which the majority of sub-updates are installed. Ma-
hajan and Wattenhofer [11] recently discuss consistent up-
dates in SDN, and their plan executor subsystem is perhaps
the closest in spirit to our work. However, ESPRES goes
further in offering the initial design, implementation, and
evaluation of a network-wide scheduler for rule installation.

Huang et al. [4] measure switch performance (e.g., rule in-
stallation rate) to build high-fidelity switch models. Jive [9]
measures the performance of OpenFlow switches accord-
ing to predetermined patterns to derive switch capabilities;
these capabilities could in turn be used to optimize network
behavior. In contrast, ESPRES dynamically adapts to run-
time switch performance while scheduling rule installation.
ONOS [1] aims for quick rule installation, and can poten-
tially leverage ESPRES.

5. SUMMARY AND FUTURE WORK
We presented ESPRES, a transparent layer for scheduling

switch commands such as forwarding rules that arise in large
network updates. ESPRES is the first system that adapts to
switch command plane performance at runtime. By doing
so it enables a vast majority of the flows to begin function-
ing correctly much quicker when compared to launching all
commands on the switches at once as is typically the case
today.

As part of future work, we are working on extending ESPRES
to accommodate several other use-cases.
Inter-update scheduling. A strawman solution to in-
stall multiple updates is to serialize them by the time of
arrival. As different updates may have bottlenecks on dif-
ferent switches, we argue that it is beneficial to install in-
dependent sub-updates from different updates in parallel.
However, while providing dependencies within a single up-
date is a responsibility of the Update Plan Generator , we
cannot expect it to provide us with dependencies between
all already submitted but not fully applied updates. Instead,
ESPRES can infer inter-update dependencies if the Update
Plan Generator annotates each sub-update with a slice def-
inition, i.e., a description of which switches and which parts
of the header space the sub-update is touching. Then, a
non-empty intersection indicates a potential dependency re-
lationship between sub-updates.

Once the inter-update dependencies are identified, our
schedulers could keep a ready set of sub-updates and sched-
ule rule operations only from this set.8 The scheduler moves
a sub-update to the ready set as soon as all sub-updates it

8For performance reasons, the scheduler might also want to
re-compute the preferred order only for this set.

depends on are installed. This allows the scheduler to use
the same scheduling techniques and assume sub-update in-
dependence as it is the case within a single update. Finally,
to avoid starvation, we prefer older updates by including up-
date epoch number as a primary sorting key for our sched-
ulers.
Prioritization. Not all network updates are equally im-
portant. For example, failure recovery should be priori-
tized over traffic engineering, even if the latter was sent to
ESPRES first. However, scheduling such updates is an in-
tricate problem – the scheduler needs to balance priority
requirements with liveness (low priority updates should not
be starved indefinitely). Furthermore, scheduler might be
forced to install a low-priority update because high-priority
updates depend on them.

Acknowledgments
The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)
/ ERC grant agreement 259110. This work was (partially)
supported by the ARC grant 13/18-054 from Communauté
française de Belgique.

6. REFERENCES
[1] ONOS: Open Network Operating System, 2014.

http://tools.onlab.us/onos-learn-more.html.

[2] A. Curtis, J. Mogul, J. Tourrilhes, and
P. Yalagandula. DevoFlow: Scaling Flow Management
for High-Performance Networks. In SIGCOMM, 2011.

[3] D. G. Feitelson and L. Rudolph. Gang scheduling
performance benefits for fine-grain synchronization.
JPDC, 16, 1992.

[4] D. Y. Huang, K. Yocum, and A. C. Snoeren.
High-Fidelity Switch Models for Software-Defined
Network Emulation. In HotSDN, 2013.

[5] S. Jain et al. B4: Experience with a Globally-Deployed
Software Defined WAN. In SIGCOMM, 2013.

[6] N. P. Katta, J. Rexford, and D. Walker. Incremental
Consistent Updates. In HotSDN, 2013.

[7] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The Internet Topology Zoo. Journal on
Selected Areas in Communications, 29(9), 2011.

[8] T. Koponen et al. Onix: A Distributed Control
Platform for Large-scale Production Networks. In
OSDI, 2010.

[9] A. Lazaris, D. Tahara, X. Huang, L. E. Li, A. Voellmy,
Y. R. Yang, and M. Yu. Jive: Performance Driven
Abstraction and Optimization for SDN. In ONS, 2014.

[10] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer,
and D. A. Maltz. zUpdate : Updating Data Center
Networks with Zero Loss. In SIGCOMM, 2013.

[11] R. Mahajan and R. Wattenhofer. On Consistent
Updates in Software Defined Networks. In HotNets,
2013.

[12] P. Pereš́ıni, M. Kuźniar, M. Canini, and D. Kostić.
ESPRES: Easy Scheduling and Prioritization for SDN.
In ONS, 2014.

[13] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for Network Update. In
SIGCOMM, 2012.

http://tools.onlab.us/onos-learn-more.html

	Introduction
	Scheduling with ESPRES
	Managing switch command queues
	Scheduling rule operations
	ESPRES schedulers
	Ordering sub-updates

	Evaluation
	Active queue management
	Intra-update scheduling
	ESPRES sensitivity to network latency

	Related work
	Summary and Future Work
	References

