
Analyzing Learning-Based Networked Systems with
Formal Verification

Arnaud Dethise
KAUST

Marco Canini
KAUST

Nina Narodytska
VMware

Abstract—As more applications of (deep) neural networks

emerge in the computer networking domain, the correctness and

predictability of a neural agent’s behavior for corner case inputs

are becoming crucial. Enabling the formal analysis of agents

with nontrivial properties, we bridge between specifying intended

high-level behavior and expressing low-level statements directly

encoded into an efficient verification framework. Our results

support that within minutes, one can establish the resilience of a

neural network to adversarial attacks on its inputs, as well as for-

mally prove properties that were previously relying on educated

guesses. Finally, we also show how formal verification can help

create an accurate visual representation of an agent behavior to

perform visual inspection and improve its trustworthiness.

Index Terms—Machine Learning, Formal Verification

I. INTRODUCTION

Neural control agents – a class of decision-making systems
enabled by learned policies in the form of (deep) neural
networks (NNs) – can achieve impressive performance results in
solving difficult problems such as congestion control [15], cache
management [19], video streaming [23], and datacenter flow
scheduling [2]. Many of these networking applications do not
have tractable optimal solutions, and the application of machine
learning (ML) techniques to optimize performance based on
learning can significantly outperform traditional approaches.

As applications of neural control agents continue to emerge
in networking problems, the correctness and predictability of
learning-based networked systems for corner case inputs are of
crucial importance; in particular, when systems taking incorrect
or unexpected decisions can hamper performance or worse,
cause failures (e.g., incorrect routing, throughput collapse).

However, a challenge in applying ML in networking appli-
cations is that a NN is like a black box: it takes an input and
produces an output, but does not offer any insight into why
that output was chosen over other possible choices. This causes
a lack of assurances and trust about system behavior, which
could respond in unexpected or incorrect ways [9], [34], and
overall hinders the adoption of learning-based solutions.

Despite longstanding interest in the rigorous verification of
NNs, only the recent developments of automated reasoning
tools demonstrated practical verification of certain proper-
ties,1 such as robustness (to input perturbations), safety, and
equivalence [20], [21]. These advances are significant not
only because automated reasoning techniques offer formal
guarantees about NNs’ behavior that enhance the overall trust-
worthiness of learning-based systems but especially because
the problem of scaling verification to NNs of relevant sizes

has been a significant challenge. Although this challenge is not
entirely overcome, recent results have made NN verification
practical for the kind of problems that we consider.

We focus on the problem of analyzing neural control agents
of learning-based networked systems through the muscles of
NN verification. As we elaborate later, formally verifying
control agents is a larger problem than NN verification because
agents operate in a dynamic environment wherein the system
state is influenced by external and uncontrolled factors, whereas
pure NN verification is concerned with reasoning directly about
the intrinsic mapping of inputs to outputs of the function
modeled with a NN. This form of reasoning is concerned with
low-level aspects such as the structure of activation functions,
hidden layers, weights and biases that are far removed from
the high-level specifications agents are intended to satisfy [38].

We view our work as a first step towards an efficient
verification of learning-based networked systems, with a focus
on practical, domain-specific guarantees that are critical to
network engineers and operators. In particular, we establish a
framework to explore and verify domain-specific properties of
neural control agents.

Our main contributions are (i) the application of formal
verification techniques to neural control agents in the net-
working context, (ii) establishing sound and complete proofs
of interesting properties and (iii) a tool enabling network
operators (without knowledge of formal verification) to verify
neural agents based on high-level properties of interest.2 In
particular, we devise properties for two case study applications
and show how to encode them through novel operators using
a verification framework based on Mixed Integer Linear
Programming (MILP), demonstrating the generality of formal
verification for neural control agents. We also show how to
verify and explore domain-based behaviors by developing a
specific encoding that establishes formal guarantees of the agent
against adversarial attacks or unreliable inputs. Finally, we
illustrate how to use formal verification techniques to provide
a visual representation of the agent behavior.

To demonstrate our framework, we provide an in-depth case
study for Pensieve [23], an adaptive video bitrate application.
Our results illustrate various properties that can be verified
using simple building blocks and automated encoding within

1A property can be formulated as a statement that if the input belongs to
some set X , then the output will belong to some set Y , where X and Y are
domain-specific variables of the system.

2Available at https://github.com/sands-lab/dnn-verification-infocom2021.

seconds. We also verify a previous claim (that some output was
rarely selected [4], [24]) and prove a stronger claim – that no
input maps to that specific output being the most likely to be
selected. Further, we extend our work to RL-Cache, a learned
caching policy for CDNs [19], demonstrating the approach
generality to a complex case involving inputs transformation.

II. PRELIMINARIES

After introducing neural control agents, we give background
on NN verification and MILP and discuss how property-based
verification works as a foundation for proving correctness.

Control agents: Our focus is on a subclass of machine learning
systems that we refer to as neural control agents. This class
of systems considers an ML-based agent interacting with an
environment. At each decision step t, the agent selects an action
at based on the current state of the system st and agent’s policy
⇡; taking action at influences the system and leads to a new
state. Generally, the system state is affected by both the agent’s
decision and external, uncontrolled factors of the environment
that the agent interacts with. In turn, this creates uncertainty
regarding the optimal agent decision.

The agent takes decisions based on a neural model of the
system parameterized as ✓. Thus, we describe the policy ⇡ of
the agent as a function ⇡✓(st) = at that captures the long-term
goal of maximizing the objective. Depending on the system,
the action space of the policy can be discrete (e.g., select one
out of a set of available bit-rates as in Pensieve) or continuous
(e.g., allocate a share of bandwidth to a flow).

In this paper, we assume that the neural model is a RELU-
based feedforward NN. To express meaningful verification
properties, we assume that the state st observed by the agent
is made of intelligible features. We find that these assumptions
hold for a range of recent NN applications in networking such
as Pensieve [23], RL-Cache [19], and AuTO [2]. We leave it
to future work to consider different kinds of ML systems.

A common approach to train control agents is Reinforcement
Learning (RL). In RL, the agent receives a reward rt for each
decision at it takes. The objective of the agent is to find the
policy that maximizes the discounted sum of expected future
rewards: E⇡✓ [

P1
t=0 �

trt] where � 2 [0, 1) is the discount
factor. In some cases, such as with Pensieve, the RL model
is trained using a simulator of the environment by replaying
traces; Pensieve replays traces that contain available bandwidth
along a network path and the simulator mimics streaming video
at different bit rates. Our focus is orthogonal to how the neural
agent is trained.

Review of mixed integer linear programming: MILP solves
linear problems over a set of integer and real-valued variables.
MILP contains a set of decision variables, a set of linear
constraints over these variables and an objective function
to be optimized (minimized or maximized) that is linear in
decision variables. Without loss of generality, we consider a
minimization formulation of a MILP. Let x1, . . . , xn be a set

of decision variables, a mixed integer linear program can be
written as

min
X

i

cixi subject to
X

i

aijxi � bj , j 2 [1,m]

and xi 2 Z, i 2 I1,
and xi 2 R, i 2 I2,

where I1 is a set of indices of integer variables and I2 is a
set of indices of real variables, I1 [I2 = [1, n] . There exist
very efficient general-purpose MILP solvers, like CPLEX [14],
Gurobi [13] and SCIP [11]. Generic MILP solvers implement
efficient solving algorithms up to a finite precision. For example,
we used CPLEX with a precision of 10�8. This order of error
is negligible, so we emphasize that those solvers are essentially
sound and complete for the purpose of this work. MILP-based
solutions have been used extensively in formal verification of
neural networks [6], [7], as well as purpose-built MILP-based
solvers like MIPVerify [30] and Sherlock [5].
MILP encoding of NN and verification: We use a recently
proposed MILP encoding [8] to encode a RELU-based NN
architecture to MILP. A neural network can be seen as a
block-wise structure, where blocks are assembled sequentially
to form the network architecture. We assume that variables
x = {x1, . . . , xn}, x 2 Rn represent inputs of the network,
i.e., inputs of the first layer, and y = {y1, . . . , ym}, y 2 Rm

represent outputs of a network, i.e., outputs of the last layer.
Hence, a NN is a mapping Rn ! Rm.

To define the property verification problem, we need to
define restrictions on the inputs and outputs of a network.
These conditions are usually domain-specific and come from
the designer of the system. Let pre(x) be a MILP formula that
defines pre-conditions on the inputs. Similarly, let post(x) be
a MILP formula that defines post-conditions on the outputs.
Given conditions pre and post, a property holds for a given
NN if the following condition holds for all x and y: (pre(x)^
y = NN(x)) =) post(y). To verify the property using a
MILP solver, we need to check whether a counterexample x0

exists that satisfies the following constraint: pre(x0) ^ (y =
NN(x0)) ^ ¬post(y). If a counterexample x0 does not exist,
we conclude that the property holds for a given NN, otherwise
we have a witness input that causes a property to fail.
Properties and correctness: The notion of correct agent
behavior is domain- and application-specific. It is commonly
assumed that the intended agent behavior is formalized as a
specification. What is interesting about neural control agents,
however, is that it is hard to bridge between a high-level notion
of correctness and the low-level artifacts like learned parameters
or activation functions that are embedded into the neural policy.
As it is typically done in this area, we assume that there are
properties that must hold at all times. In particular, we verify
properties that can be expressed with linear conditions on the
input and outputs of the agent. A simple example property is
as follows: x1 2 [a1, b1] ^ x2 2 [a2, b2]) y1 > k. That is,
when inputs x1, x2 are within some predefined range, then the
output is above a threshold k.

III. CASE STUDY: PENSIEVE

Pensieve [23] trains RL agents that adapt the bit rate selection
during video streaming over the Internet, leading to superior
user experience. In video streaming environments, a server
stores videos divided in chunks, which are fixed-length pieces
of the video. Each chunk is available in multiple bit rates:
encoding the chunk with a higher bit rate provides better video
quality, but is also larger. The main constraint in streaming
environments is the available network bandwidth, which limits
how fast clients can fetch video chunks.

An adaptive bit rate (ABR) algorithm is an algorithm that
selects the bit rate encoding for each chunk with the goal of
maximizing the user’s quality of experience (QoE). Selecting
a high bit rate provides a better experience but consumes
more bandwidth and might cause playback interruptions when
the client buffer drains; conversely, selecting a lower bit rate
provides a lower quality but avoids interrupting the video while
additional chunks are downloaded.

Pensieve trains a neural control agent that selects bit rates
for future video chunks based on observations collected by the
client’s video player. The agent selects the bit rate of the next
chunk among six possible bit rates. The reward function is a
widely used QoE metric [36], which increases with higher bit
rate chunks (maximize quality) but decreases when there is
rebuffering or the quality changes (maximize smoothness).

Because Pensieve does not make assumptions about the
environment, it can learn algorithms tailored to different
network conditions and different QoE metrics, leading to a
12%-25% increase in average QoE [23].

The reason we select Pensieve as a primary case study is two-
fold: (i) its NN contains around 110,000 trainable parameters,
which is a significant measure for NN verification, and (ii)
there are important stability considerations around the agent
behavior. In particular, because video streaming performance is
relevant to billions of users worldwide, agents that misbehave
may severely affect user experience, cause disproportionate
revenue losses, and possibly be leveraged by adversaries for
targeted attacks. Moreover, some recent works showed evidence
that Pensieve agents exhibit several anomalies [4], [18]. Later,
§VII generalizes our work to a second case study: RL-Cache.

Model architecture: Pensieve takes as input 25 features
divided into six categories: previous bit rate selected, duration
of video in the buffer, number of chunk remaining, measured
throughput and download time for the past decisions and the
size of the next chunks. Pensieve uses a CNN composed of two
hidden layers with RELU activation. For single-value features,
the first layer is fully connected. For multiple-value features,
the first layer is a convolutional layer. In both cases, the layer
uses 128 units. The outputs of the first layer are concatenated
and passed through a fully-connected layer with 128 units.
The output layer is composed of a fully-connected layer with
6 outputs and softmax activation. The output is used as a
probability distribution over each possible bit rate.

IV. PROPERTIES VERIFICATION FRAMEWORK

We now describe how we encode the NN model and intended
agent behavior as a MILP. To make the verification accessible
to network operators with little or no knowledge of formal
verification, our work is three-fold. We design a set of primitives
that are powerful enough to express high-level specifications of
the expected behavior, which we expose as building blocks in
our verification framework. We also define simple restrictions
based on practical domain-specific constraints that are not
explicitly known to the ML agent (such as inputs being discrete
or limited to a specific range). Finally, we automatically convert
the NN model into formal constraints.

The encoding of the agent inside the solver is divided into
two main components. The first one is the encoding of a
network function. This function is defined by the structure of
the NN, including the linear and RELU operators, and the
trained weights and biases of each operation. The encoding
of the NN is independent of the encoding of the properties.
Constraints encoding will vary between different agents, but
is static for any trained agent: one encoding can be used to
verify many properties.

The second part of the encoding deals with the verification
properties. These properties formalize the intended behavior
of the agent, which is expressed in terms of constraints over
input and output variables. Recall from Section II that to verify
whether a property holds, we solve a MILP that encodes both
the network function and the negation of a property. If the
MILP solver outputs that the problem has no solutions, then
the property is verified.

Properties are usually written by domain experts (in our
case, network operators) to encode specific expectations about
the agent behavior. While those building blocks can express
functions over any kind of inputs, it is usually difficult to
express the intended behavior of the agent with unintelligible
raw features. For this reason, we assume that all properties
will be written over intelligible features, which can be directly
mapped to concrete information, such as the amount of buffered
video data at the client. We believe that this restriction is
inherent to the task at hand (verifying high-level properties).

With regard to the encoding, the novelty of our work against
prior works on NN verification lies in the observation that
intended agent behavior typically is formalized at a higher level
of concern than the low-level preconditions and postconditions
about the mapping between inputs and outputs, which NN
verification directly supports. As such, we devise a set of
building-block operators that enable encoding intended agent
behavior properties succinctly and naturally.

Network structure: To encode the NN, we define each layer
as a set of constraints. We address two kinds of computational
layers: fully-connected layers, and convolutional layers. For
a fully-connected layer with l inputs and n neurons, suppose
we want to encode the relation y = RELU(Ax + b). The
encoding uses four different sets of variables: the inputs x
(size l), outputs y (size n), the ReLU state indicator variable
z and auxiliary real variable s (size n). The weights A and

biases b are extracted from the trained model. We can then
express the constraints between those variables as:

8i 2 {1..n}, yi =
P

j Ai,jxj + bi � si

zi = 1) si = 0

zi = 0) yi = 0

where zi is a Boolean variable, yi, si are positive real variables.
Our encoding also extends to convolution layers, and is

compatible with CNNs. To encode convolution layers with
ReLU activations, instead of expressing yi as a linear product
of all variables, we restrict them to only the input variables
selected in the convolution filter.

The encoding of activation functions requires some con-
sideration since they capture nonlinear relations in the net-
work structure. As described above, the RELU activation
function can still be encoded in the MILP solver since it
is a piecewise linear function. But, the softmax activation
function �(z)i =

eziPn
j=1 ezj – which is commonly used in the

network’s output layer – is nonlinear. We observe that the
softmax is however strictly increasing, meaning that we can
use the property oi > oj) �(oi) > �(oj) to find the highest
value. Thus, we encode the nonlinear softmax function by
encoding the rank of each neuron’s value in that layer and
represent it as a linear function.
Domain constraints: NNs usually take unconstrained continu-
ous numerical values as inputs. However, the data representation
often defines a larger space than the actual domain of possible
values allowed by the application. We represent this discrepancy
using a set of specific domain constraints. The most common
domain constraints are limited range (for example, a value
might have been normalized in the {0, 1} interval during pre-
processing) and discrete inputs. For the definition and encoding
of these constraints, see the building blocks defined below.

One important distinction between domain constraints and
properties is that, while properties represent the expected
behavior of the agent (which we want to verify), domain
constraints are inherent properties of the system and a violation
is not possible (for example, a video client cannot buffer more
data than the maximum buffer capacity, which gives an upper
bound on the value of the input variable representing buffer
occupancy). As such, we can significantly reduce the search
space and speed up verification.

Domain constraints can either be defined manually (restrict-
ing the range of input variables) or automatically inferred from
a training dataset. If discovered automatically, the following
method is used: for each input and output variable in the
dataset, collect all existing values; if the number of distinct
values is lower than a configurable threshold, define the variable
as discrete; otherwise, use the lowest and highest values as
lower and upper bounds. We note that some domain constraints
might not be discovered using this approach, such as distinct
intervals or multivariable constraints. Those can instead be
encoded manually as properties.
Properties: The properties to verify are defined over inputs
and outputs of the control agent. For example, we can restrict

a range of possible values for some inputs, and enforce a
constraint that a certain output is expected. We now describe
the typical constraints on input and output variables. These
constraints are the building blocks used to compose the
properties we wish to verify.

Constants and ranges. Many properties are defined by
expressing conditions for specific values or input ranges. This
type of constraint can be trivially encoded using inequality
constraints.

Linear relations. This kind of constraint is the basis of MILP
verification. We provide a simplified building block to express
relations of the form a1x1 + a2x2 + · · ·  b.

Maximum value. Many agents use the output of the last
layer as a weight vector such that the selected decision is the
one that has the highest value (or the lowest value, which
is an analogous property). To encode them in the solver, we
use the operator defined as “variable xi is the maximum of
{x1, ..., xn}”. The encoding of this operator uses auxiliary
variables p1, ..., pn and is encoded as:

8j 2 {1..n}, pj = 1 , xi � xj ;
P

j pj = n

Intuitively, we see that if xi is maximum, then all pj will be
equal to 1 and the second condition is fulfilled. We assume
that ties are broken in favor of xi.

Discrete variable. Control agents frequently take discrete
variables as inputs, but the neural network treats all variables
as continuous. To ensure that only possible values are selected
for these variables, it is required to be able to encode the
pre-existing knowledge that a variable can only be taken from
a set of known constants.

To encode this information, we use an operator defined
as “variable x must be equal to some value ci from the set
{c1, ..., ck}”. To do so, we define auxiliary variables p1, ..., pk
and express the property as:

8i 2 {1..k}, pi = 1 , x = ci;
P

i pi = 1

Intuitively, the first constraint expresses that the indicator
variable pi is equal to 1 if and only if x = ci, while the
second constraint ensures that exactly one of the values is
selected.

V. IMPLEMENTATION

Our implementation of NN verification uses the CPLEX [14]
MILP solver. The encoding of the NN structure is done in
Python, by automatically transforming TensorFlow NN models
into formal constraints.

For the transformation, we encode the NN inputs as a set
of unbounded variables. We then add constraints representing
the connections between variables in each layer (each operator
in the NN yields a constraint). For example, a fully-connected
layer is encoded using the following relation:

8i : yi =
X

j

wij · xj + bi

To express the RELU activation function, we use the
encoding described in Section IV. Since the output layer is

normalized using the nonlinear softmax, it cannot be encoded in
the MILP solver; instead, we directly use the value of the node
before applying normalization, which nonetheless preserves
the ordering of the variables.

To allow for testing of different model versions, the weights
and biases are read from static model files. This makes it
possible to verify a different model sharing the same structure
(but with different weights) by simply replacing the checkpoint
file. The trained models used for the evaluation were provided
by the authors of their respective papers.

A. Building properties
As discussed in Section IV, properties can be encoded using

simple building blocks. We described the MILP encoding
for four different predicates, which we express as constant
(variable is fixed), inrange (variable is bounded above and
below), inset (variable is restricted to a discrete set of possible
values) and maximum (variable is/isn’t the maximum among
other variables).

We now see how these blocks can be used to encode the
properties that we verify in Section VI. Note that for all
properties, the solver will only return a solution if all constraints
are satisfied.
Dataset constraints. Some variables, such as the previously
chosen bit rate in Pensieve, can only be selected from a finite
set of values. In that case, we can directly use the “discrete
variable” predicate to encode the set of possible values as a
constraint on the input variables x1, ..., xn. This ensures that
any solution found by the MILP solver only assigns valid
values for these inputs.

Additionally, some variables are naturally bounded because
of the information they represent. For example, in Pensieve,
the network throughput is always positive and the buffer has
a maximum size. Because those constraints are inherent and
can be checked before observing a decision of the agent, we
use the inrange predicate to enforce natural bounds on input
variables.
Adversarial perturbations. Given input variables x1, . . . , xn

(continuous or discrete) and output variables y1, . . . , ym, we
take an initial point P = p1, ..., pn mapping to output yP .
We suppose that the attacker’s ability to change the inputs is
asymmetrical, and consider the attack power over variables
x1, . . . , xn to be proportional to k1, ..., kn. An attacker with
attack power ✏ can change the value of xi by at most ✏ · ki.

To verify that an attacker with attack power ✏ cannot alter
the decision, we use the following encoding:

8i 2 {1, . . . , n}, xi inrange(pi � ✏ · ki, pi + ✏ · ki)
yP 6= maximum(y1, . . . , ym)

By showing that no solution satisfies the constraints, we prove
that an attacker with power ✏ is unable to change the decision.

To find the minimum value of ✏, we perform an iterative
search for possible values of ✏ with precision 0.001. Note that
the run times reported in the next section are for the complete
verification (including multiple calls to the solver).

Missing features. Given input variables x1, . . . , xn (contin-
uous or discrete) and output variables y1, . . . , ym, we take
an initial point P = p1, . . . , pn mapping to output yP . We
suppose that a subset L of x1, . . . , xn is lost (all variables in
L take arbitrary values within their valid ranges).

To verify that the decision does not change despite the
missing inputs, we use the following encoding:

8xi 2 {x1, . . . , xn} \ L, xi = constant(pi)

yP 6= maximum(y1, . . . , ym)

If any solution satisfying those constraints is found, then the
agent is not resilient to the loss of the features in L (it can
lead to a different decision).

Decision boundaries. Given input variables x1, . . . , xn (con-
tinuous or discrete) and output variables y1, . . . , ym, we want
to display the decision boundaries for input variables xa and
xb such that la  xa  ua and lb  xb  ub. Other variables
are fixed to constant values {p1, . . . , pn} \ {pa, pb}, and we
want to draw the area such that the highest output is yP .

The problem is thus encoded as:

8i 2 {1, . . . , n} \ {a, b}, xi = constant(pi)

xa inrange(la, ua)

xb inrange(lb, ub)

yP = maximum(y1, . . . , ym)

Each solution returned by the solver maps to one set of
RELU states in the neural network. By rewriting the neural
network as a linear equation, we can then find the corresponding
bounds on xa and xb. In Figures 1a and 1b, each area
corresponds to one solution satisfying the above constraints.

VI. RESULTS

We present several questions that can be answered by using
the formal encoding of the Pensieve agent. These questions
answer practical concerns of network operators which reflect
possible roadblocks to the deployment of Pensieve in real
environments and provide insightful information about the
behavior of the model. While being specific to this application,
the questions are a case in point illustrating that our approach
enables answering formally regarding two important aspects of
robustly trained agents: exact guarantees about the robustness
of the model and accurate understanding of the model behavior
over continuous inputs. Therefore we expect our approach to
generalize to other applications and we illustrate one such
extension later in Section VII.

The results below use different timeouts to cap verification
time (mentioned individually for each block of results). While
most of the properties are verified within 20 seconds, we
note that in some cases we reach the timeout, whereas higher
timeout values might have produced results. However, we set
a limit to express the trade-off between available resources
and accuracy. In practice, the timeout can be adjusted to fit
different resources and needs.

Case 1 Case 2

All inputs 0.081 0.042
Previous bit rate 0.331 0.056
Throughput, latency 0.200 0.062
Buffer, chunk sizes, 0.329 0.135

remaining chunks
Buffer 0.335 0.140
All throughput 0.288 0.085
Throughput, latency 0.342 0.104

(most recent value only)

TABLE I: Attacker power (✏) required to alter the decision.
A. Resilience to adversarial perturbations

A common goal of a neural agent like Pensieve is to direct the
system in an uncontrolled environment. An adversary could
gain partial control over that environment, which leads to
variations in the inputs.

Thanks to formal verification, we can ensure that adversarial
perturbations cannot cause a specific decision to cross the
decision boundary and cause a different output of the NN. We
also show how to find the minimum degree of control that an
adversary should have over a particular set of inputs to cause
an erroneous decision.

We evaluate the resilience of the Pensieve agent against
adversarial perturbation by comparing attackers that alter
different subset of the inputs in Table I. Given an attacker
that can alter each input feature xi by a factor no more than
✏ · ki, we report the minimum value of ✏ such that the attacker
can change the decision. For all parameters, we set the value
ki = upperi� loweri, where upperi and loweri are the upper
and lower bound on possible values for xi.

Because the attacker power is measured around some specific
input, we cover two cases. Case 1 represents a fictional
execution trace where the throughput measured by the agent
is always constant and the buffer data is equal to the average
value across the testing dataset. In this scenario, the expected
behavior of the agent is known but must be verified, i.e., we
want to ensure that an attacker could not affect the output
with limited power. Case 2 represents a realistic case from
the testing dataset that is observed to create uncertainty in the
decision (the agent gives high probability to multiple bit rates).
In this scenario, the exact behavior of the agent is uncertain,
and the verification provides additional information about the
behavior of the agent to understand its decision. The results
are shown in Table I; Table II reports corresponding run times.

We observe that in case 1 (where the expected agent behavior
is known), an adversary needs a strong power to be able to
change the decision (✏ is large). One interpretation is that the
agent is confident in its decision, and only large changes in
the inputs will cause a different decision. On the other hand,
in case 2, the required power is much smaller (✏ is lower
than in case 1), showing that it is easy to change the agent
decision with small changes. Those conclusions hold as long
as the attacker’s control over each variable ✏ · ki is roughly
proportional to the range of the variable values.

Additionally, we also observe that different input features
have different impact on the decision. For example, being able
to change all measurements of throughput and latency makes

Case 1 Case 2

All inputs 21.23 16.36
Previous bit rate* 47.47 22.47
Throughput, latency 551.40 31.82
Buffer, chunk sizes, remaining chunks 92.80 51.94
Buffer 114.30 72.70
All throughput 134.90 73.46
Throughput**, latency** 163.30 85.16

TABLE II: Run times (in seconds) of Table I results.
Case 1 Case 2

Throughput False False
Latency Timeout False
Latency (4 values) True False
Throughput (1 value) True False
Chunk size True True
Previous bit rate False False

TABLE III: Robustness to missing features. Cell indicates
whether the agent is stable when the listed feature is missing.

it possible to change the decision with limited power, while
having control only on the amount of buffered data requires
higher attack power. As expected, being able to change all
inputs at the same time requires a smaller change to the input
values than controlling only part of the data.

One thing to note is that in the case of the previous bit rate,
which is a discrete input, the required power corresponds to
the power required to change to the next discrete value. In
case 1, the attacker needs to change the input from 1850Kbps
to 300Kbps (three steps), while in case 2, it changes from
1850Kbps to 1200Kbps (one step).

B. Robustness against missing features

In the case of learning-based networked systems, the inputs
are often based on incomplete knowledge about the system
state. For example, a congestion control agent chooses the best
sending rate using a local estimate of the network utilization
and available bandwidth. In some cases, this presents a risk
that the input values are incorrect, either because the local
information does not reflect the actual state of the network or
because measurements are inaccurate. Due to the difficulty (or
impossibility) of perfect system state knowledge, it is often
necessary to ensure that, even under incorrect information, the
agent maintains a robust policy.

Our approach allows operators to verify if erroneous input
values would lead to incorrect behavior. We define erroneous
inputs as one (or several) of the inputs taking arbitrary values
independent of the actual state of the environment, and incorrect
behavior as changing the decision taken by the agent when
every other input value remains identical to the original.

To illustrate this property, we verify whether the Pensieve
agent can maintain the same decision when some of its input
features receive arbitrary values. Table III reports whether the
agent decision changes by altering the value of a subset of all
input features (run times in Table IV). We test the agent in
two different cases, as previously described in Section VI-A.

We observe that in both cases, incorrect values for the past
throughput or the previous decision can lead to a change in the
decision. In other words, those values are always significant

Case 1 Case 2

Throughput 7.74 7.91
Latency Timeout 12.34
Latency (4 values)* 7.35 8.62
Throughput (1 value)* 7.37 7.71
Chunk size 7.26 7.63
Previous bit rate 7.46 7.87

TABLE IV: Run times (in seconds) of Table III results.
to the decision. We note that Pensieve has compound values
among its inputs, as the throughput, latency, and previous bit
rate are co-dependent.

On the other hand, arbitrary changes to the chunk size will
never alter the decision. For example, if the inputs showed
that the next chunk encoded at 750Kbps is as large as the one
encoded at 4300Kbps, it would not affect the decision of the
agent in either case.

Regarding the latency, we were not able to make any
conclusion for the first case before reaching the timeout (set
to one hour). This means that we did not find any inputs for
which the decision changed, but were not able to cover all
possible inputs. By reducing the search space to only the four
most recent latency measurements, it was possible to confirm
that changes in the input value of these features would never
lead to a different decision.

C. Decision boundaries
Some of the input features are continuous both in Pensieve

as well as in many other applications. However, minor changes
in the inputs should not lead to drastically different outputs.
This means that we can define contiguous areas of the input
space in which all inputs lead to the same decision.

In turn, this means that the bounds of the area represent
decision boundaries, which connect two different decision
areas. For example, in the case of Pensieve, we can find a
decision boundary in the input space where the decision shifts
from a low-quality bit rate to a higher quality.

While the decision boundaries are very important to under-
stand the behavior of an agent, there is no straightforward way
to extract them from a NN. The main obstacle is that extracting
the decision boundary requires handling an exponential number
of possible values due to the nonlinear RELU activations.

We solve this problem by restricting the output space only
to possible representations while looking at pairs of input
variables. This approach allows us to show the decision map of
the agent in a 2D space corresponding to the chosen variables
by extracting the linear function from the network for a given
system state.

To illustrate the benefits of visual inspection, we provide
an example with the Pensieve agent by displaying the output
of the neural network for different values of the buffer and
throughput. Figures 1a and 1b show the output boundaries
when the previously selected bit rate is 300Kbps and 750Kbps,
respectively. Other inputs are set to the average values in the
dataset for the corresponding decision.

Visual inspection shows that there is a region between the
300Kbps and 750Kbps decisions where the agent will maintain
the previous decision (assuming an average buffer value). For

(a) Previous selected bit rate is 300Kbps

(b) Previous selected bit rate is 750Kbps

Fig. 1: Pensieve decision boundaries. Red: 300Kbps; green:
750Kbps.

example, for the input highlighted in yellow, the agent will
decide based on the previous decision, maintaining smoothness
in video playback. This behavior is expected to avoid rapid
changes between the bit rates when a decision is taken close
to the boundary.

For other values, such as the two points highlighted in cyan,
the agent will always decide to select the same bit rate. For
example, if the buffer contains only 6 seconds of video and
the network throughput is less than 1250Kbps, the agent will
always select the 300Kbps bit rate. This behavior will cause
the buffer to fill, preventing rebuffering in the future.

Visual inspection allows operators to assert that the region
provides a sufficient transition space to ensure that the decisions
are in line with the expected behavior, as well as understand in
which regions the agent decides to take a safe behavior (filling
the buffer) rather than switching to a higher bit rate.

D. Verifying specific properties
In some cases, possible pitfalls in a particular environment

are known to domain experts. Thus, it is important to verify
that the neural policy correctly avoids known pitfalls.

For example, in the case of Pensieve, it was observed in [4],
[24] that the agent would usually not select some available
bit rates even when the condition seemed optimal. However,
the claim was based only on observations over a limited set

of traces and does not provide a complete verification or the
conditions under which those bit rates would be selected.

We tried to verify that claim in the case of one of the
two bit rates, 1200Kbps, which is almost never selected. We
configured our tool to verify inputs that would be ideal to
select that decision (i.e., the throughput measured is constant
at 1200Kbps, the previously selected bit rate was identical, and
the buffer value is not especially high or low). The property
that we encoded was to return all possible inputs in which the
target decision has a higher probability than any other one.

Our result shows that, in reality, the 1200Kbps bit rate is
never the one with the highest probability. While the agent will
select that bit rate occasionally, it is only because the decision
is ultimately randomized over weighted probabilities.

Additionally, we also relaxed as many constraints as we
could to find the minimum set of constraints under which we
could safely conclude that this bit rate would never be selected.
In those scenarios, our tools proves that the target bit rate will
never be selected if the measured network throughput over the
four most recent decisions was 1200Kbps, with every other
variable left unbounded.

VII. EXTENSION TO COMPLEX CASES

We now extend our verification approach to more complex
neural agents for networking problems, in an attempt to explore
the limits of our technique. To this end, we apply property
verification to the case of RL-Cache [19], an admission control
agent for cache control in CDNs. We test generic, trivial
properties such as “find all possible RELU assignment in
the output region” to verify how our verification tool behaves
when verifying complex NN structures.

RL-Cache accounts for a large number of features of cached
objects, including object size, recency, and frequency of access,
to decide whether to cache said object. Unlike traditional
approaches to cache control such as LRU or SLRU which
typically use only one or two of these features, RL-Cache uses
ML to train an algorithm that uses all the information available
to make a decision, with the goal of maximizing cache hit rate.

However, because it uses a NN to support its decision, it
becomes impossible to determine through manual inspection if
the learned policy is sound. For example, one might want to
verify whether a small object that has been accessed recently
be accepted in the cache over a large stale object. Formal
verification of decision properties can answer this question
while still maintaining the benefits of the ML approach.

One of the aspects that makes RL-Cache an interesting use
case is that its implementation uses input pre-processing and
non-RELU activations, making the encoding challenging. In
this section, we describe how we handle those specific aspects
of RL-Cache to successfully verify its properties.

A. Non-linear activation functions
Unlike Pensieve, which uses RELU activation functions,

RL-Cache uses the Exponential Linear Unit (ELU) activation
function [3]. ELU is a variant of RELU in which the transition
between the domains on which the unit is on and off is

smoothed using an exponential function. The ELU activation
function is defined as:

f(x) =

(
x if x > 0

↵ (exp(x)� 1) if x  0

where ↵ > 0 is a smoothing parameter. Using ELU
activations improves training time by pushing the mean unit
activation closer to zero, and improves noise resistance when
close to the activation threshold.

However, ELU is not a linear function. Because our property
verification framework relies on linear verification, the use of
this activation function makes encoding the structure of the
neural network more challenging.

To solve this, we use an approximation of the ELU function
called SRELU (Shifted RELU). The SRELU variant is similar
to ELU but does not smooth the transition between activated
and deactivated states. Figure 2 shows the difference between
the RELU, ELU (with ↵ = 1) and SRELU functions.

Fig. 2: RELU, ELU, SRELU and Piecewise ELU.

Because we must use a linear approximation of the true
function, we are forced to weaken the guarantees of our
verification framework, as the formal encoding of the network
can differ from the actual values. However, we observed that
in practice, the difference between the actual ELU functions
and SRELU representation, in the trained network, is generally
negligible and does not change the output.

If higher accuracy is needed, it is possible to replace the use
of SRELU by a piecewise linear approximation of ELU, as
depicted in Figure 2. In this approach, a trade-off is made by
sacrificing the efficiency of the solver to increase the accuracy
of the linear model.

B. Non-intelligible inputs transformation
To be able to verify meaningful properties, it is required

that inputs be intelligible, i.e., refer to concrete concepts that
a human operator can reason about to express the properties.

In the RL-Cache implementation, each input is intelligible
(object size, recency and frequency of access, etc). However,
to facilitate learning, the inputs are first transformed into
non-intelligible variants, which are then fed to the NN.
Consequently, it is not possible to directly express properties
on the input features and to use the verification predicates
described in Section V-A.

To achieve verification on transformed inputs, we leverage
a property of the transformation that any linear property

expressed on intelligible features, can be verified on a non-
intelligible transformation of these features if, given a convex
subspace of the input space, the transformation converts it into
a finite set of convex subspaces.

Intuitively, this approach consists of rewriting any convex
subspace of the intelligible space into a convex subspace of
the transformed space. By preserving the convexity, we ensure
that any value falling between the bounds in the original space
will also fall inside the bounds after transformation.

We convert all properties using the inrange predicate to use
the transformed space instead. Similarly, all properties using
the inset predicate are converted to the set of transformed
values. For properties in which the original convex subspace is
transformed into multiple subspaces, we split them into separate
properties, each independently verified for each transformation.

VIII. RELATED WORK

A sound and complete verification framework guarantees
that a method either proves that the property holds or finds
a counterexample to this property. For example, frameworks
like Reluplex [16], Marabou [17], MIPVerify [30] provide
complete verification algorithms. These frameworks are based
on Satisfiability Modulo Theories (SMT) or/and Mixed Integer
Linear Programming (MILP) search engines. The main issue
with this approach is scalability. For example, NNs that are
used for computer vision tasks contain millions of parameters.
Theoretically, large NNs allow us to generate their formal
specifications. However, in practice, these formalizations are
challenging to reason about for modern solvers.

To counter this challenge, we focus on expressing concrete
properties based on domain knowledge that encapsulates
desired or unwanted behavior and can be verified in a
reasonable time. A sound and incomplete verification framework
guarantees that it either proves a property or it remains unknown
whether the property holds. Examples of such frameworks
are FastLin [33], Crown [37], DeepZ [29], etc. The main
underlining idea is to perform safe approximate reasoning
about the behavior of a neural network. If the approximate
reasoning is sufficient to prove a property then incomplete
methods succeed otherwise they fail. Another line of work
focuses on training robust networks. This line of work focuses
on robustness to small input perturbations. This research
direction includes techniques like adversarial training [12],
[22] and designing certified defenses [26], [27], [35]. The
idea of adversarial training is to take stochastic gradient steps
at an approximation of worst-case perturbations rather than
original inputs. These techniques help to improve robustness
empirically, but they cannot provide any guarantees. Certified
defense methods compute an upper bound of loss function
under the adversarial attack by relaxation of the network
function during the training procedure. During the inference,
these methods are able to compute a certificate of robustness.
However, they might fail to certify robust inputs. [18] presented
results on the verification of RL controllers. For example, the
authors defined and verified several properties of the Pensieve
agent. Our work builds on top of this work, and we perform

an in-depth analysis of two different controllers. [10] focuses
on robustness properties for Pensieve and proposes a new
training procedure to enhance the robustness of the network
controller. Finally, our work on finding decision boundaries is
based on the reachability analysis work by [31] as we perform
an enumeration of feasible RELU assignments.

A parallel field of work is to explain the neural networks
based on post-hoc explanations. Anchors [28] provides expla-
nations of a model’s decisions based on local approximations
and can be used to predict model behavior. L2X [1] learns a
model that provides instance-wise feature selection and can
be used to verify some model properties such as ensuring that
the model reacts to specific inputs. However, those approaches
can only provide a small subset of desirable properties and do
not provide any guarantee that their predictions are correct.

A different approach aims to produce interpretable versions
of a trained NN by retraining a new, separate agent, using the
original model as a training oracle. For example, PIRL [32] uses
the oracle to create a program in a high-level, domain-specific
language that attempts to minimize the distance to the oracle
while being interpretable. Metis [24] makes interpretation of the
original model possible by training a decision tree that emulates
the oracle, or by generating a hypergraph representation that
captures the critical results of the original system. These
systems build an interpretable model as a surrogate, which
might not capture the original model perfectly (indeed, they
generally cannot model the same complexity, because the
surrogate model has a smaller number of parameters). Unlike
those approaches, we directly verify properties on the true
representation of the original network, without retraining a
separate model.

DiffAI [25] proposes a solution to provably verify the correct
classification of instances via abstract interpretation, which
guarantees that inputs will be mapped to the correct output
under adversarial noise. However, DiffAI is mainly focused
on neighborhood searches and it is not possible to express all
the constraints that represent high-level properties we wish
to verify with this approach, while we showed that the same
properties can be encoded in a MILP solver using a small set
of operators.

IX. CONCLUSION

We are currently at the onset of ML applications in
networking. Yet, early learning-based networked systems are
producing performance improvements and we expect more
such systems will be developed. It is crucial that, together with
performance benefits, assurances and other provable properties
be established about these systems or else they might not be
deployed in practice. We described what to our best knowledge
is the first framework that demonstrates how to build on
the formal guarantees of NN verification to prove practical
properties of interests. We showed two case studies of our
framework, establishing for instance the resilience of Pensieve
to adversarial inputs within minutes.

REFERENCES

[1] J. Chen, L. Song, M. Wainwright, and M. Jordan. Learning to Explain:
An Information-Theoretic Perspective on Model Interpretation. In
International Conference on Machine Learning, ICML, 2018.

[2] L. Chen, J. Lingys, K. Chen, and F. Liu. AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization. In
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM, 2018.

[3] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and Accurate Deep
Network Learning by Exponential Linear Units (ELUs), 2015. arXiv
1511.07289. http://arxiv.org/abs/1511.07289.

[4] A. Dethise, M. Canini, and S. Kandula. Cracking Open the Black Box:
What Observations Can Tell Us About Reinforcement Learning Agents.
In Workshop on Network Meets AI and ML, NetAI, 2019.

[5] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari. Sherlock
- A tool for verification of neural network feedback systems. In
International Conference on Hybrid Systems: Computation and Control,
HSCC, 2019.

[6] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. Output Range
Analysis for Deep Feedforward Neural Networks. In NASA Formal
Methods Symposium, NFM, 2018.

[7] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural
Networks. In International Symposium on Automated Technology for
Verification and Analysis, ATVA, 2017.

[8] M. Fischetti and J. Jo. Deep Neural Networks and Mixed Integer Linear
Optimization. Constraints, 23(3):296–309, 2018.

[9] T. Gilad, N. H. Jay, M. Shnaiderman, B. Godfrey, and M. Schapira.
Robustifying Network Protocols with Adversarial Examples. In Workshop
on Hot Topics in Networks, HotNets, 2019.

[10] T. Gilad, N. H. Jay, M. Shnaiderman, B. Godfrey, and M. Schapira.
Robustifying Network Protocols with Adversarial Examples. In Workshop
on Hot Topics in Networks, HotNets, 2019.

[11] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L.
Gottwald, G. Hendel, C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher,
M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt,
F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J. M. Viernickel,
M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP
Optimization Suite 6.0. Technical report, Optimization Online, 2018.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples. In International Conference on Learning
Representations, ICLR, 2015.

[13] Gurobi. Gurobi Optimizer Reference Manual, 2019.
[14] IBM. ILOG CPLEX Optimization Studio, 2019.
[15] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar. A Deep

Reinforcement Learning perspective on Internet Congestion Control. In
International Conference on Machine Learning, ICML, 2019.

[16] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.
In International Conference on Computer Aided Verification, CAV, 2017.

[17] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, and
C. W. Barrett. The Marabou Framework for Verification and Analysis of
Deep Neural Networks. In International Conference on Computer Aided
Verification, CAV, 2019.

[18] Y. Kazak, C. W. Barrett, G. Katz, and M. Schapira. Verifying Deep-
RL-Driven Systems. In Workshop on Network Meets AI and ML, NetAI,
2019.

[19] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman. RL-Cache:
Learning-based Cache Admission for Content Delivery. IEEE Journal
on Selected Areas in Communications, 38(10):2372–2385, 2020.

[20] F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella. Automated
Verification of Neural Networks: Advances, Challenges and Perspectives,
2018. arXiv 1805.09938. http://arxiv.org/abs/1805.09938.

[21] C. Liu, T. Arnon, C. Lazarus, C. W. Barrett, and M. J. Kochenderfer.
Algorithms for Verifying Deep Neural Networks, 2019. arXiv 1903.06758.
http://arxiv.org/abs/1903.06758.

[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards
Deep Learning Models Resistant to Adversarial Attacks. In International
Conference on Learning Representations, ICLR, 2018.

[23] H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Streaming
with Pensieve. In Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM, 2017.

[24] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu. Interpreting
Deep Learning-Based Networking Systems. In Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM, 2020.

[25] M. Mirman, T. Gehr, and M. Vechev. Differentiable Abstract Interpreta-
tion for Provably Robust Neural Networks. In International Conference
on Machine Learning, ICML, 2018.

[26] M. Mirman, T. Gehr, and M. T. Vechev. Differentiable Abstract
Interpretation for Provably Robust Neural Networks. In PInternational
Conference on Machine Learning, ICML, 2018.

[27] A. Raghunathan, J. Steinhardt, and P. Liang. Semidefinite Relaxations
for Certifying Robustness to Adversarial Examples. In Conference on
Neural Information Processing Systems, NeurIPS, 2018.

[28] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-
agnostic explanations. In AAAI Conference on Artificial Intelligence,
2018.

[29] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T. Vechev. Fast and
Effective Robustness Certification. In Conference on Neural Information
Processing Systems, NeurIPS, 2018.

[30] V. Tjeng, K. Y. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming. In International Conference
on Learning Representations, ICLR, 2019.

[31] H. Tran, D. M. Lopez, P. Musau, X. Yang, L. V. Nguyen, W. Xiang,
and T. T. Johnson. Star-Based Reachability Analysis of Deep Neural
Networks. In Third World Congress on Formal Methods, 2019.

[32] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. Programmat-
ically Interpretable Reinforcement Learning. In International Conference
on Machine Learning, ICML, 2018.

[33] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. S. Boning,
and I. S. Dhillon. Towards Fast Computation of Certified Robustness
for ReLU Networks. In International Conference on Machine Learning,
ICML, 2018.

[34] C. Wierzynski. The Challenges and Opportuni-
ties of Explainable AI, 2018. https://ai.intel.com/
the-challenges-and-opportunities-of-explainable-ai/.

[35] E. Wong and J. Z. Kolter. Provable Defenses against Adversarial
Examples via the Convex Outer Adversarial Polytope. In International
Conference on Machine Learning, ICML, 2018.

[36] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP. In
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM, 2015.

[37] H. Zhang, T. Weng, P. Chen, C. Hsieh, and L. Daniel. Efficient Neural
Network Robustness Certification with General Activation Functions. In
Conference on Neural Information Processing Systems, NeurIPS, 2018.

[38] H. Zhu, Z. Xiong, S. Magill, and S. Jagannathan. An Inductive Synthesis
Framework for Verifiable Reinforcement Learning. In Conference on
Programming Language Design and Implementation, PLDI, 2019.

