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Abstract—The emergence of programmable switches has
sparked a significant amount of work on new techniques to
perform more powerful measurement tasks, for instance, to
obtain fine-grained traffic and performance statistics. Previous
work has focused on the efficiency of these measurements alone
and has neglected flexibility, resulting in solutions that are hard
to reuse or repurpose and that often overlap in functionality or
goals.

In this paper, we propose the use of a set of reusable primitive
building blocks that can be composed to express measurement
tasks in a concise and simple way. We describe the rationale
for the design of our primitives, that we have named MAFIA
(Measurements As FIrst-class Artifacts), and using several ex-
amples we illustrate how they can be combined to realize a
comprehensive range of network measurement tasks. Writing
MAFIA code does not require expert knowledge of low-level
switch architecture details. Using a prototype implementation of
MAFIA, we demonstrate the applicability of our approach and
show that the use of our primitives results in compiled code that
is comparable in size and resource usage with manually written
specialized P4 code, and can be run in current hardware.

I. INTRODUCTION

Historically, network measurement’s evolution paralleled
the growth of the Internet but at a much slower pace. SNMP,
ping, and traceroute constituted the bulk of measurement-
related aids for a long time. The introduction of SDN has led to
significant work on various aspects of programmable network
infrastructures. An SDN controller can dynamically install
and modify switch rules, enforce high-level operator policies
and gather statistics. Starting from the original white paper
[1] various aspects of SDN (and particularly OpenFlow [2])
have been examined in depth. Unfortunately, measurement,
a well-understood requirement for the Internet, with a long
body of developed work for over two decades, appears to
have been an afterthought in SDN’s development. In fact, [1]
mentions security a dozen times (rightfully so) but the words
measurement or metrics do not appear in it.

Given measurement’s importance in network operation and
management, there has been a flurry of work on exploiting
SDN features and programmable switches to perform more
powerful measurement tasks. Beyond OpenFlow, proposals
like OpenState [3] and switch programmability as in P4 [4]
have enabled richer, customizable in-network processing that
can implement measurements for fine-grained traffic and net-
work performance statistics [5]–[7]. Most of the recent work
in this area focuses on efficiently mapping measurement tasks
on programmable forwarding elements. Efficiency is key as
current programmable switch chips have limited computational
and memory resources [5], [7]–[9].
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An important requirement that has not been addressed in
prior work is flexibility and extensibility in supporting a va-
riety of measurement tasks; instead we have ad-hoc solutions
proposed for specific measurements. In spite of advances in
programmable data planes, it is not possible without signifi-
cant effort to combine, reuse or repurpose existing solutions
although they may partly overlap in functionality or goals.

We instead argue for supporting flexible measurement
through a set of reusable building blocks (primitives) that
take advantage of novel features of programmable forwarding
elements and span most of the commonly performed measure-
ment tasks. We identify a set of such primitives that network
operators can use to express measurement tasks in a concise
and simple way. Further, they are reusable as complex tasks
can be expressed by composing a few calls to a subset of our
measurement primitives.

We define our approach as Measurements As FIrst-class
Artifacts, or MAFIA for short. Concretely, we instantiate our
ideas as an API that provides an abstraction over measurement
primitives that execute at line rate in the data plane. We
remark that our primary target is network operators, who
are not proficient data plane programmers, yet they desire to
quickly address performance-, security- and troubleshooting-
related measurement needs. As such, our goal is not satisfied
by and is orthogonal to data plane programming languages like
P4. These technologies are an enabler for MAFIA but remain
fundamentally lower-level approaches.

Our work is informed by the large number of legacy
measurements that have been carried out routinely in large and
small networks as well as new ones in the SDN milieu. We
identify the primitives for measurement on the basis of their
breadth of applicability and the ability for maximal reuse (i.e.,
a good implementation can yield rich dividends in a broad
set of contexts). We are driven by four key considerations
inherent in measurement [10]: what, where, when, and how.
We validate our idea by showing that several key known SDN
measurements and some new ones can be built by composing
our abstractions. Our primitives can be used to answer ques-
tions ranging from network-wide traffic characteristics (e.g.,
flow size distributions, identifying heavy hitters [11]–[14], to
fine-grained monitoring of properties of flows and switches
(throughput, latency, loss, etc.) [15]–[19], to verification (traf-
fic behavior matching operator’s intent) [20], to debugging
(e.g., troubleshooting root causes of performance problems or
switch/controller misbehavior) [21], [22], and various security
aspects (e.g., anomalies, DDoS, malicious activity) [13], [14].

We contribute the following: i) We identify a set of pro-
grammable and reusable primitives that can be supported
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TABLE I: Measurements scenarios: Legacy vs SDN.

by switches to realize flexible measurement tasks; ii) We
show how our primitives can be composed and applied to a
wide variety of measurements due to their orthogonality; iii)
We develop a MAFIA prototype that compiles measurements
expressed through our API into equivalent P4 codes that
can execute in current P4-compliant programmable switches.
We show that our abstractions reduce development effort of
measurement tasks while the resulting P4 code is, in size,
only marginally larger than the hand-written version, and can
be mapped to hardware with a modest use of resources.
MAFIA is released as open-source [23].

II. ON MEASUREMENT PRIMITIVES

A core tenet of our work is that many of the common
network measurement tasks can be expressed by composing
primitives that can be supported by current and future pro-
grammable forwarding elements. But what is a good prim-
itive? Functions that are routinely applicable for a range
of measurement needs is a candidate given its potential for
reuse. Functions also need to be composable to express more
complex tasks. They should be sufficiently low-level to be
broadly applicable but sufficiently high-level to reduce effort.

However, modern data rates of high-speed networks impose
stringent per-packet processing requirements. Thus, primitives
should have low processing and state complexity so they can
be implemented in programmable forwarding elements.

Finally, the primitives need not be novel; instead, we seek
to ground our choice on functionalities that have proven
themselves useful in various contexts. We survey prior work,
studying a range of measurement scenarios in traditional

networking and in SDN environments before describing the
set of our primitives.

Measurement Scenarios: We performed an analysis of the ex-
tensive related work in network measurements. We examined
five key categories that have historically dominated work in
this area: traffic engineering [11]–[14], [24], [25], performance
monitoring [5], [7], [15]–[19], verification [20], [26], [27],
troubleshooting [7], [21], [22] and security [13], [14], [25].

While in legacy networks, SNMP, NetFlow and sFlow were
still the tools (despite being ineffective in enabling visibility
into the details of individual flows), in SDN context, packet
and byte counters available from OpenFlow matching rules
help [15] in calculating throughput, port/link utilizations and
packet loss with their exact information. Polling frequency is
traded off against computational cost. Sampling is an option
[16] if protocol-specific information like sequence numbers are
available to correct the estimation phase. Novel approaches
have also proposed compact data structures and algorithms
based on Bloom filters to monitor the number of packets for
each flow [17] as well as packet losses [17], [18]. Sketches can
as well be used for these measurement scenarios to provide
approximate counters for a group of flows. Programmable
forwarding elements are also enabling stateful tracking of
flows directly in the switches [19].

Table I summarizes the main measurement categories
and captures the differences between traditional and SDN
environments. We identified common factors exploited for
measurement-related problems. The mechanisms used in pre-
vious measurements (shown in the last two columns) are
particularly relevant for our work, as they helped us identify
a small set of key primitives usable in a broad range of use
cases. We build on this small set of building blocks to provide
flexible, programmable measurements for most of the known
measurement tasks.

Selecting the Primitives: Examining the various techniques
that have been proposed, we see that for each measurement-
related problem, up to 5 different, ad-hoc solutions existed.
Implementing them in every switch is impractical. Many of
these mechanisms overlap in intent and functionality and
cannot be easily repurposed to address different questions. To
expose operators to the unnecessary complexity of figuring out
the nuances of the different variations of roughly equivalent
mechanisms makes production of new measurement code
harder. To avoid these pitfalls, we have identified a core set of
primitives that allow us to express the vast majority of common
measurement tasks and some new ones hitherto unaddressed.
These primitives are orthogonal and can be combined to
express complex measurement tasks. They are: Match, Tag,
Timestamp, Sample, Counter, BloomFilter, Sketch, and
Window. We argue that switches should provide support to
perform these primitive measurement operations. As shown in
§V, this set supports a wide range of measurement needs and
can be mapped to hardware with a modest use of resources.



III. MAFIA
A measurement task in MAFIA is expressed by combining

primitives through the sequential and parallel composition
operators. Semantically, a task is a function that processes
a stream of packets using our primitive-oriented operators (or
simply primitives). Operators take a packet as input, optionally
modify state and produce either a packet as output or the null
value to stop its processing. A task also includes flow key
definitions to group packets into flows (e.g., the IP 5-tuple) and
a declaration of state variables to be used by stateful operators.

We note that measurement tasks neither interact nor in-
fluence forwarding logic. Once a packet is consumed by a
measurement task, processing for that packet logically ends
and, subsequently, the forwarding logic is applied until the
packet leaves the switch (or gets dropped).

The input stream denoted as pkts represents the stream of
all received data packets. The input stream denoted as ctrl
captures instead the packets received from the SDN controller.
Additionally, named logical streams can be created by sam-
pling packets; a sampled packet is duplicated and injected in a
logical stream to be processed further. Each primitive executes
well-defined operations on the packets in the stream as per its
semantics. Our examples given below illustrate the use of our
primitives on the different streams.

When describing a measurement task using MAFIA the user
is oblivious to where the primitives are executed. In this paper
we focus on compiling the primitives such that they can be
executed in a programmable switch ASIC. However, our work
can be extended to compile MAFIA to other targets, such as
software switches or smart NICs.

We now give an overview of MAFIA primitives (§III-A).
We then describe how primitives compose (§III-B) and discuss
how we implement measurement intervals (§III-C). Finally,
we use the example of detecting heavy hitters to detail how
MAFIA works and the nature of code that network operators
would write while using our API (§III-D).

A. MAFIA Primitives

We categorize primitives in 4 classes: i) to perform filtering
(Match); ii) to manipulate packets (Tag and Sample); iii) to
manipulate state (Timestamp, Counter, Sketch and Bloom-
Filter); and iv) to control the measurement interval. Table II
presents a summary of these primitives, their API, and hints of
their implementation in P4. We now describe each primitive’s
functionality and then discuss the required resources.
Match: Filters and selects classes of packets by parsing and
inspecting the content of packet headers. Provides conditional
tests on state, allowing detection when some condition holds.
Tag: Modifies or adds a header field to the packet. Tagging
is useful for piggybacking measurement data to other entities
in the network, notifying a controller, or disseminating infor-
mation to other devices.
Sample: Makes a (logical) copy of the current packet,
separating the stream of samples from the original input
stream. Permits to send sampled packets to external entities
like a controller or a collector [16], [22].

Primitive API P4 Implementation
Tables Actions LoC

Match match(conditional) 1 builtin 9
Tag tag(header field, expr) 1 1 9
Sample duplicate(stream) 1 1 22

collect(endpoint) 1 S S
Timestamp timestamp(t) 1 2 10
Counter set, reset 1 4 12

BloomFilter membership:
{insert, test, reset, init}. 1 O(H) O(H)

counting:
{set, reset, init, all, any,
sum, avg, min, max}

1 O(H) O(H)

Sketch pcsa/hll:
{update, test, reset} O(H) O(H) O(H)

count-min:
{set, reset, sum, avg,
min, max}

1 O(H) O(H)

store:
{set, reset, all, any, sum,
avg, min, max}

1 O(H) O(H)

Window window (variable)

TABLE II: Measurement primitives & API.

Timestamp: Reads the local clock at the switch. The ability
to derive time-related information is essential to detect time-
outs or estimate latency and packet inter-arrival times [28].
Switches are not assumed to have synchronized clocks.
Counter: Keeps track of measurable quantities such as
number of bytes, packets, etc. Counters are the standard
support for statistics in OpenFlow [2], first realization of SDN,
and in traditional telemetry systems (NetFlow). Numerous
approaches successfully leveraged counters [11], [12], [15].
BloomFilter: Allows for efficient implementations of mem-
bership sets. Permits to dynamically filter specific flows.
Extensions to the counting Bloom filer algorithm can also be
used to store measurement state [17], [18].
Sketch: Compact data structures to hold summaries of
large datasets with provable accuracy bounds. Sketch families
include counting algorithms (count-min sketch) and cardinality
estimators (PCSA, Hyperloglog) [13], [25].
Window: Allows to specify the duration of the measurement
interval (see §III-C).

Table II’s right columns depict the number of P4 tables and
actions needed to implement each primitive, with the total
number of LoC (Lines of Code). The collect operation of the
Sample primitive requires a number of actions S dependent
on the method of samples collection (e.g., forwarding to a
monitoring server that is directly attached vs. via IP encapsu-
lation). BloomFilter and Sketch require an amount of code
proportional to the H hash functions used; for these cases, a
min-max range is given. Match does not require any custom
action. Window yields code dependent on the size of the
structures that need to be reset (see §III-C).

B. Combining Primitives

Primitives can be composed to express complex measure-
ment tasks. We consider two forms of composition: sequential
and parallel (somewhat similar to NetKAT [29]).

a) Sequential composition: Primitives can be composed
in serial order using the operator �. The composition: A �



B � . . . � Z indicates that A must be executed first, then
B, etc. The execution of each primitive takes into account
the effects of the previous primitive. That is, operators’ side
effects (e.g., updating a counter) are made visible as soon as
they execute. This is different from NetKAT, which models
policies as pure functions. Note that operators that follow a
Match are only executed if the conditional evaluates to true.

b) Parallel composition: Primitives can be parallelized
via the operator +; the expression A+B + . . .+ Z executes
the primitives independently and applies multiple disjoint
measurement operations to the packet. Note that the API does
not prevent two parallelized primitives to execute concurrent
operations on the same set of state variables. In general, to
prevent any inconsistency at runtime, our intention is for read-
write and write-write conflicts to be detected ahead of time
through static analysis (left for future work).

C. Measurement Interval

MAFIA allows the user to assign a measurement interval to
any measurement task. The purpose of specifying an interval is
to avoid state overflowing and thus corruption of measurement
results. At the end of each interval, data structures are reset
to their initial values before a new interval is initiated. The
measurement interval is specified in time units (in the current
version, in seconds) using the window operator.

When a measurement interval is specified, a composition
has two modes of operation. The measuring mode, where
the primitives are invoked as specified by the measurement
task, and a resetting mode, during which the state of the
primitive’s state is reset. Given that there is a limited amount
of instructions that can be executed at line rate, full reset of the
data structures cannot be done atomically (i.e., it can take too
long to reset all the data structures at once). To circumvent this
limitation, all our data structures support incremental reset.
When operating in resetting mode, at each packet processing,
incremental reset is invoked, which clears a portion of the data
structure. The resetting mode persists, advancing incrementally
each time a packet is received, until all portions of the data
structures have been reset; at that time a new measurement
interval is initiated. The time required to perform the reset
can be minimized by exploiting spare resources in the switch
pipeline to maximize the amount of cleared state at each
packet. The actual length of the resetting phase depends on
the amount of memory used by the measurement and on the
packet inter-arrival times.

D. MAFIA by Example

We present the flavor of the MAFIA API through a use
case and discuss the abstractions on which it relies, as well as
detailing the behavior of the measurement primitives.

Consider the problem of identifying heavy hitters, i.e., flows
that consume more than a fraction γ of link capacity. Typical
approaches to this problem consist of installing forwarding
rules associated with counters to monitor flows [12], [24].
However, limited switch memory makes it impossible to install

1 flowid = Key( ip . src , ip .dest , tcp . src , tcp .dest , ip . proto )
2 tota l = Counter(width=32)
3 nbytes =
4 Sketch(alg=”count−min” ,nhash=4,key=flowid ,size=256,width=32)
5 hh =
6 BloomFilter(alg=”membership” ,key=flowid ,nhash=4,size=64)
7 hh bytes =
8 HashMap(key=flowid ,size=1024,type=Counter(width=32))
9 window(mment interval)

10 / / Heavy hi t ter detection .
11 pkts
12 � match(pkt . input port == PORT )
13 � tota l .set( tota l + pkt .size )
14 � ( ( match( !hh. test ( ) )
15 � nbytes .set(nbytes + pkt .size )
16 � match(nbytes .min( ) / tota l > γ )
17 � hh. insert ( )
18 � hh bytes.set(nbytes .min( ) )
19 � duplicate(hh alarms) )
20 +
21 ( match(hh. test ( ) ) � hh bytes.set(hh bytes + pkt .size ) ) )
22 / / Alarms sent to the SDN controller .
23 hh alarms
24 � tag( ipv4 .checksum, nbytes .min( ) ) � collect (CONTROLLER )
25 / / Control t r a f f i c to retrieve heavy hit ters volume.
26 c t r l
27 � match(pkt . request==HH VOLUME ) � duplicate(get hh volume)
28 get hh volume
29 � tag(pkt .hh volume, hh bytes) � collect (CONTROLLER )

Listing 1: Two-phase heavy hitter detection with MAFIA.

a separate rule for each flow; the common strategy is to moni-
tor a set of aggregates (i.e., grouping classes of flows at coarse
granularities) and then zooming in on the ones most likely to
contain heavy flows. Unfortunately, this technique introduces
a detection delay since it counts in several consecutive time
intervals. Other approaches adopt approximate algorithms such
as the count-min sketch to approximately count the size of
flows [13], [25]. A monitoring server can then retrieve the
sketch data from the switch to compute the identifiers of the
top-k largest flows. Although sketches can provide provable
bounds on the estimation error, collisions between different
flows are workload-dependent and hard to predict.

Instead, we combine these approaches to obtain fast detec-
tion with accurate results. MAFIA allows to do so by flexibly
composing a few primitive operations. The algorithm works in
two phases. First, it identifies potentially large flows using a
count-min sketch. After a flow has been detected as a possible
heavy hitter (by checking against a user-defined threshold),
its identifier is encoded in a Bloom filter. The filter keeps
track of the set of suspected flows, whose packets will then
be monitored using exact counters instead of using a sketch.
Next, we send alarms to a controller whenever suspected flows
are inserted in the filter. The corresponding MAFIA code
(Listing 1) consists of two main parts: i) measurement state
declarations and ii) the composition of primitives.

1) Measurement state: Lines 1-8 present an example of
state declaration for the considered measurement.

a) Keys: Keys allow us to group packets to flows and
map them to measurement state. Each state variable can
be configured to maintain multiple instances of the same
primitive’s state. This is done using a hash map that, through a
hash function of the key, obtains an index at which to hold flow
state. Hash maps are meant to be simple container abstractions



and do not handle potential hash collisions on different keys in
our implementation. Eviction techniques for collision handling
such as the one adopted in [5] are amenable to be used within
our approach. Bloom filters and sketches adopt a set of hash
functions to implement the mapping of packets to state.

b) State: State is important in a wide range of mea-
surement needs, including tracking traffic conditions, filtering
events and maintaining statistics or counters. State is main-
tained in the data plane and updated at line rate.

State is declared as named variables for stateful primitives.
In the example (Lines 2-8), we have i) a counter total, which
is used to track the total volume of flows received on an
input port; ii) a sketch nbytes using a count-min algorithm
to approximately measure the volume of a set of flows; iii)
a membership Bloom filter hh holding the set of flows to be
monitored by exact counters; and iv) an hash map of counters
hh bytes used to track the volume of heavy hitters.

Declaration of state variables is required by primitives
manipulating them (i.e., Timestamp, Counter, Sketch and
BloomFilter). Variables of these types all require some pa-
rameters, such as the width of counters (in bits), the number
of hash functions nhash for sketches and Bloom filters, etc.

MAFIA does not mandate how state is consumed. In certain
contexts, the maintained state serves as a filter to pick up
interesting packets or flows that need to be collected at
monitoring servers. In other contexts, the maintained state
(e.g., flow counters, volume sketches) is the information of
interest; this information can be queried in-band (as in [30])
using Tag, or via switch-specific APIs (beyond our scope).

2) Composition of primitives: A composition of primitives
is the core part of a measurement task in MAFIA. In List-
ing 1, two compositions of primitives (Lines 12-21 and 23-24)
implement the heavy hitter monitoring and controller alarms,
respectively. The entry point is at Line 11.

First, we select (Line 12) from the pkts stream all packets
from a given input port (PORT) using the Match primi-
tive with a conditional on the pkt’s input port field. Recall
packets are parsed into tuples and we allow expressions on
packet header fields and metadata via intuitive keywords (e.g.,
ipv4.src for the IP source address, pkt.size for the packet
size). The available packet headers are the ones that derive
from the switch packet parsing procedure. Then, we maintain
(Line 15) a total count of traffic volume ingressed.

Next, depending on whether the current packet belongs
(Line 14) to the set of heavy hitters (hh) or not (Line 21), one
of two things happen. As these are independent, we express
them as a parallel composition guarded by the (mutually
exclusive) tests on the hh BloomFilter. Lines 15-19 measure
flows not (yet) suspected to be heavy hitters, while Line 21
measures the heavy hitters. In the first case (non heavy hitter),
we update (Line 15) the flow’s volume in the nbytes Sketch
and then we query (Line 16) the count-min sketch to check
whether the flow’s estimated bandwidth utilization is above γ.
We insert (Line 17) flows that exceed the threshold into the
hh Bloom filter and we raise (Line 19) an alarm for each such
flow, by duplicating the packet into the hh alarms stream. In

the second case (heavy hitter), we update (Line 21) the flow’s
volume tracked by an exact counter in hh bytes, which is
initialized in Line 19 with the current value of the sketch when
the heavy hitter flow is flagged.

The last part of the code, on Lines 23-24, handles the
duplicated packets generated whenever a flow is detected as
heavy hitter. We tag the packets with the current flow volume
from the sketch and forward them to the controller node
processing these alarms. The counter values of flows identified
as heavy hitters can be queried by the controller using control
requests: Lines 26-29 handle this case. We match control
traffic for specific requests (Line 34) and, as a response, we
tag the queried value (Line 29). Note that the controller needs
to know the counters where the queried value is. We use a
straightforward solution: given that flagged flows are sent to
the controller as alarms, the controller can use packet crafting
techniques [31] to forge the necessary header values when
querying the switch state.

This example, addressed with only 29 lines of code, is able
to improve measurement efficacy when compared to the com-
mon black-box solutions using only sketch-based algorithms
or exact counters. It merges the benefit of small memory
requirements of sketches to identify which flows should be
monitored (reducing the number of expensive counters to be
employed) with the precision of exact counters to determine
the volume of heavy flows (thus eliminating estimation errors
due to hash collision in the sketch). Collisions in the bloom
filter maintaining the current set of heavy hitters that may
pollute the exact counters of the heavy flows can be rendered
unlikely at a small cost to memory.

IV. IMPLEMENTATION

We implement MAFIA as a small domain specific language
embedded in Python. Although our approach is not tied to any
particular programmable forwarding element implementation,
as backend we target PISA (Protocol-Independent Switch
Architecture) [8] switches programmed in P4. Our implemen-
tation consists of a compiler (around 4,500 lines of code
in Python) that takes a MAFIA measurement as input and
produces an equivalent P4 program.

The compilation process is illustrated in Figure 1. We
follow a compilation sequence composed of the five phases
enumerated below. For brevity, we highlight the salient details.
A pre-compilation phase translates a MAFIA code into Python.
Then, the corresponding AST (Abstract Syntax Tree), where
operators are nodes of the tree, is built. The compiler then
produces an intermediate representation of unoptimized P4
code by analyzing the primitive composition and translating it
into a set of tables and actions. These are the P4 processing
blocks (packet functions) of MAFIA code, whose execution is
controlled via a sequence of P4 table calls that is determined
by the compiler analyzing how primitives were composed
via the + and � operators. Then, an optimization phase
takes as input a target’s model specification, and produces the
code optimized for the target’s architecture. This optimization
phase accounts for the different target capabilities and handles
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differences in syntax of dialects of P4 (P4-14, P4-16). Finally,
the process generates P4 code for tables, actions and registers.
Extending our solution to target different architectures, soft-
ware switches or smart NICs, is left as future work. Table II
shows the number of P4-14 lines of code and the number of
tables and actions necessary to implement each primitive.

V. EVALUATION

We evaluate our approach along three axes. We assess the
expressiveness of MAFIA by implementing 13 measurement
tasks that are routinely done along with some new ones.
We then compare the efficiency of the P4 code generated
by our compiler by contrasting the complexity of MAFIA
implementation of these tasks with a manual implementation.
Finally, we show the feasibility of our approach by assessing
the hardware resource required to deploy each considered
measurement use case on programmable switches.

A. Expressiveness

The measurement tasks are enumerated in Table III. Due
to space constraints we do not show the corresponding code
for all (presented in a technical report companion to this
paper [32], but focus on three tasks that demonstrate the re-
usability and composability of our primitives: i) identification
of congested flows by improving a state-of-the-art solution
offered by INT (In-band Network Telemetry) [26]; ii) measure-
ment of path changes and iii) and monitoring of the distributed
coordination of a novel path update protocol, ez-Segway [33].
Some of these tasks require deploying measurement tasks in
different switches whose identity is assumed to be known
at deployment time. As mentioned, we show capability of
MAFIA in some new measurement tasks beyond well-known
ones.

a) Top-k Congested Flows: Detecting flows that are
experiencing large queuing delays in the network is impor-
tant to guarantee quality of service and meet service level
agreements. INT collects hop-by-hop information (e.g., queue
occupancy, hop latency) for each packet by using a custom
header, inserted to the packet at the network ingress point
and stripped at egress point. However, potentially large per-
hop information needs to be exported in order to be used
for analysis. We can improve on this by using a simple
composition of primitives and provide a stateful algorithm
identifying the most congested flows. Listing 2 shows the

MAFIA code for this measurement task. It has three code
segments to be installed at different switches. 1) The first-hop
switch marks the packet’s IP ToS field to indicate whether the
measurement should be applied, and tags the IP ID field with
the current queue occupancy level. 2) Intermediate switches
check if the packet has been marked and update the tag by
summing the local queue occupancy. 3) The last switch records
the total amount of queuing encountered along the path using
a count-min Sketch, which can be periodically queried to
compute the top-k elements. Another Sketch using the same
flow key instead tracks the total number of changes happening
over time. We could add a Counter tagged in packets to
track the number of hops traversed by each packet, useful
to compute an average value of queue occupancy at each hop.
A similar measurement could also sum up the queuing time
experienced at each hop, using Timestamp.

b) Path Changes: Recently proposed load balancing
mechanisms, such as flowlet switching [34], autonomously
cause path changes without any coordination with a controller.
One may want to monitor such mechanisms to understand how
often a given flow changes its path. We show how such a task
can be realized using MAFIA in Listing 3. To encode the path
followed by a packet, we use a BloomFilter to store the packet
location (i.e., the current switch ID and port), which is tagged
into the packet’s IP ID field. The filter is updated at every hop,
resulting in a compact representation of the path. At the last
hop, we collect the tag, and save it inside a Sketch, which
maintains the identifiers of the packet’s path.

The measurement checks, at every packet, if the carried path
tag value is found in any entry held in the sketch (i.e., holding
the flow status at the previous packet). If not, a path change
is detected, and a count-min sketch tracking the amount of
changes is updated. The controller can fetch the data at desired
frequency to learn about path changes.

c) Path Change Coordination and Latency: Implement-
ing path changes in SDN networks often involves updat-
ing forwarding rules in multiple switches. Lack of proper
coordination in these changes may result in transient in-
consistencies such as black holes, loops, or link overloads.
There has been significant research effort in techniques to
provide consistent forwarding updates in SDN. We focus our
attention on ez-Segway [33], a technique that shortens the time
required to perform consistent path changes by implementing
a coordination mechanisms among the switches that requires
the exchange of “GoodToMove” messages in a given order.
We now describe a measurement that captures the partial
order by which the “GoodToMove” messages are exchanged
during the reconfiguration and also the time at which these
messages are received by each switch involved in the task.
This measurement can be used to find bugs in the coordination
algorithm that may prevent the path change protocol from
terminating and also to assess how long it takes to execute. The
MAFIA code is shown in Listing 4. We detect the receipt of a
“GoodToMove” message and generate a duplicate to be sent
back to the controller. Both a local Timestamp and a logical
clock are recorded and tagged before the copy is sent back to



1 window(mment interval)
2 / / Code executed at f i r s t hop:
3 pkts � tag( ipv4 . tos , ipv4 . tos | 0x1)
4 � tag( ipv4 . id , pkt . in queue length) )
5 / / Code executed at intermediate hops:
6 q len = Counter(width=32);
7 pkts � match( ipv4 . tos & 0x1 == 0x1)
8 � q len .set( ipv4 . id + pkt . in queue length)
9 � tag( ipv4 . id , q len)

10 / / Code executed at last hop:
11 flowid = Key( ip . src , ip .dest , tcp . src , tcp .dest , ip . proto )
12 total pkts =
13 Sketch(alg=”count−min” ,key=flowid ,nhash=4,size=1024,w=32)
14 path q len =
15 Sketch(alg=”count−min” ,key=flowid ,nhash=4,size=1024,w=32)
16 pkts � match( ipv4 . tos & 0x1 == 0x1)
17 � total pkts .set( total pkts + 1)
18 � path q len.set(path q len + ipv4 . id )

Listing 2: Identifying the top-k congested. flows

1 / / Code to be executed at intermediate switches
2 location = Key(pkt . input port , switch . id , pkt . output port )
3 location bf =
4 BloomFilter(alg=”membership” ,key=location ,nhash=4,size=32)
5 pkts � location bf . i n i t ( ipv4 .checksum)
6 � location bf .set ( )
7 � tag( ipv4 .checksum, location bf )
8 � location bf . reset ( )
9 / / Code to be executed at the packet ’s last hop

10 flowid = Key( ip . src , ip .dest , tcp . src , tcp .dest , ip . proto )
11 paths sketch =
12 Sketch(alg=” store ” ,key=flowid ,nhash=4,size=256,width=32)
13 n change sketch =
14 Sketch(alg=”countmin” ,key=flowid ,nhash=4,key=flowid ,size=256)
15 window(mment interval)
16 pkts � match( ! paths sketch .any( ipv4 .checksum) )
17 � paths sketch .set( ipv4 .checksum)
18 � n change sketch.set(n change sketch + 1)

Listing 3: Measuring flow path changes.

1 / / Code to be executed on a l l switches updating rules
2 change ts = Timestamp( ) ;
3 l clock = Counter(width=8) ;
4 pkts � match(segway header.msg == GoodToMove)
5 � l clock .set(max( l clock + 1, segway header. ts ) )
6 � tag(segway header. ts , l clock )
7 � duplicate(end of update)
8 end of update � timestamp(change ts)
9 � tag(segway header. time , change ts)

10 � tag(segway header. ts , l clock )
11 � collect (SEGWAY CONTROLLER )

Listing 4: Monitoring the ez-Segway [33] protocol.

the controller via sampling. The use of logical clocks allows
the controller to build a causal graph of the deployed updates,
providing an execution log that can be queried for debugging
and verification. If the controller’s and switches’ clocks are
synchronized (e.g., via NTP), real timestamps permit the
controller to estimate the time between change deployments
and their actual occurrence.

B. Efficiency

Table III shows the number of MAFIA primitives re-
quired to specify each of the considered use cases. The
table also compares the number of LoC needed to implement
the measurement manually in P4 and the resulting size of
the compiler-generated code (optimized and not). Both the
compiler-generated code and the manual implementation in-
stantiate the same amount of state, which means that our

P4 LoC
Measurement (Manual) (Compiler)
Use case API: Primitives raw opt.
Flow
volume and
duration

3 × Match;
3 × Counter HashMap;
2 × Timestamp HashMap;

121 185 146
(+20%)

Approximate
flow volume

1 × Match;
1 × Sketch (count-min)

107 120 120
(+12%)

Flow
cardinality

1 × Match;
1 × Sketch (PCSA)

86 92 92
(+6%)

Flow
cardinality

1 × Match;
1 × Sketch (HyperLogLog)

96 102 102
(+2%)

Counter
thresholds

5 × Match;
2 × Counter HashMap;
2 × Sample

139 193 170
(+22%)

Stochastic
sampling

2 × Match;
1 × Tag;
1 × Sample;

103 126 118
(+14%)

Deterministic
sampling

5 × Match;
3 × Counter HashMap;
1 × Tag;
1 × Sample;

131 207 167
(+27%)

Postcard
generation

2 × Match;
4 × Tag;
1 × Sample;

94 121 101
(+7%)

Trajectory
encoding

5 × Match;
1 × BloomFilter;
1× Timestamp+HashMap ;
6 × Tag;
1 × Sample;
1 × Counter;

244 299 260
(+6%)

Two-phase
heavy
hitter

4 × Match;
1 × Counter;
1 × Counters HashMap;
1 × Sketch (count-min);
1 × BloomFilter;

261 345 281
(+8%)

Top-k
congested
flows

3 × Match;
1 × Counter;
2 × Sketch (count-min);
3 × Tag;

198 240 204
(+3%)

Path
changes

3 × Match;
1 × Sketch (count-min);
1 × Sketch;
1 × BloomFilter;
1 × Tag;

325 389 345
(+6%)

Path
change
latency

2 × Match;
1 × Timestamp;
1 × Sample;
1 × Tag;

38 44 41
(+8%)

TABLE III: Use cases.

compiler is efficient and does not introduce state overhead. The
flow cardinality use cases has been address by two different
variations of sketches [35] [36]. The code complexity of the
optimized version is comparable to hand-written code: the P4
LoCs produced by MAFIA are, depending on the task, 3%
to 27% larger than those of the code written manually in P4.
The use cases using a single sketch (approx. flow volume and
cardinality) are always optimized by our compiler.

The low number of primitives employed in each use case
demonstrates that it is possible to express the measurements
concisely. With a handful of primitive invocations, it is possi-
ble to express measurement techniques that would otherwise
require significant coding effort. Our API is able to convey the
measurement intent and describe the operational steps involved
allowing network operators to focus on the measurement needs
to be carried out rather than issues arising from using a low-



Measurement Pipeline
depth

Pipeline
width

Num.
Atoms

Banzai
Atom Type

Flow volume and duration 4 4 11 Sub
Approximate flow volume 4 5 18 RAW
Flow cardinality 3 3 6 RW
Flow cardinality 3 2 4 RW
Counter thresholds 5 2 9 If-Else-RAW
Stochastic sampling 3 1 3 If-Else-RAW
Deterministic sampling 6 2 8 Pairs
Postcard generation 1 5 5 RW
Trajectory encoding 6 3 8 RW
Two-phase heavy hitter 8 12 41 If-Else-RAW
Top-k congested flows 9 6 38 If-Else-RAW
Path changes 9 13 49 If-Else-RAW
Path change latency 4 2 5 RW

TABLE IV: Resource requirements of use-cases.

level language such as P4. Compilation times for each of the
considered examples is always below 25 ms and is negligible
compared to the effort of implementing several ad hoc solu-
tions in P4. Our primitive-oriented approach benefits from the
reusability of a simple set of measurement functionality.

C. Feasibility

To demonstrate the deployment feasibility of our approach,
we estimate the resource requirements of a hardware switch1

for the measurements presented in Table III, following the
same methodology as in previous work [5]. The metrics we
consider are: i) the depth of the switch processing pipeline
(i.e., number of match-action stages); ii) the width of the
pipeline (i.e., the maximum number of parallel computation
that needs to be performed in a single stage); and iii) the total
number of processing atoms that each measurement occupies
in the switch pipeline.

We model each of the measurements using the Banzai
machine model [37] and compile the Banzai code using its
compiler, Domino. A Banzai machine comprises of stateless
atoms, which are able to perform binary operations (arithmetic,
logic, and relational) on pairs of packet fields, and one stateful
atom, capable of accessing and updating the switch registers.

Table IV shows that all of the measurements considered can
be mapped to hardware with a modest use of resources. The
most complex measurement requires 9 pipeline stages and 13
concurrent operations per stage, for a total of 49 atoms. To
put this in context, current programmable switch chips [8],
like Barefoot’s Tofino (24 stages and up to 63 actions per
stage), already fulfill these requirements.

MAFIA expects a target switch to make a certain amount
of memory available for primitives. Current programmable
switch architectures support 0.5 - 32 Mb of memory for each
stage [8], organized in register arrays. Memory employed in
MAFIA is mapped to registers by our compiler.

VI. RELATED WORK

Our selection of primitives is inspired by many success-
ful measurement approaches [11]–[15] that demonstrated the

1We are not allowed to report results for the actual resource requirements
on a Barefoot’s Tofino switch chip due to a confidentiality agreement.

value of maintaining exact packet or byte counters or ap-
proximate estimates via sketches or Bloom filters, sampling
information, exporting information via packet tagging, etc.
These ideas were applied successfully in a range of contexts
from detecting heavy-hitters to estimating the traffic matrix,
to measuring throughput, latency, and packet loss.

OpenFlow [2] supports traffic monitoring by automatically
associating packets and bytes counters to flow match rules
installed by the controller. These have been used to perform
heavy-hitter detection, traffic matrix estimation, throughput,
latency, and packet loss [11], [12], [15]. Two key limitations of
rule-based counters emerged: 1) measurement data are tightly
coupled to the flow-matching rules required to implement the
forwarding policy; and 2) data collection led to high overhead
on both controller(s) and switches (additional network traffic,
CPU processing, and time). Subsequent research mitigated
these drawbacks using approximation algorithms and data
structures (i.e., sketches and bloom filters) to keep short
summaries of traffic characteristics [13], [14], with provable
bounds on accuracy when assigned a certain amount of re-
sources. But they had limited applicability and/or re-usability,
as they were tailored to specific measurement problems that
required special-purpose, hard-coded algorithms.

Recent trends on programmable data planes [4] allow the
definition and implementation of somewhat arbitrary mea-
surement algorithms [17]–[19] that can be installed on pro-
grammable forwarding elements. However, current measure-
ment approaches propose only tailored solutions to specific
problems, without providing general and reusable abstractions
to ease network measurements specification.

In-band Network Telemetry [26], a practical realization of
TPP [30], aims at improving network visibility by gathering
measurement data (i.e., queuing, delay, losses and utilization)
along the path taken by the packets. However, INT’s appli-
cability is limited by design and narrows its focus to the
areas of performance monitoring and troubleshooting. Also,
it cannot specify stateful measurement algorithms. Supporting
explicit composability, MAFIA provides INT’s benefits while
also covering a wider range of measurements needs.

Marple [5] proposes high-level language abstractions to ease
expressiveness of measurement tasks. It focuses on providing
aggregation of linear-in-state query results directly in the
switch, but is limited to performance-related measurements.
Its technique relies on the ability to export state from switches
on hash collisions towards an offline collector, where partial
results are then aggregated.

Sonata [38] proposes a data-streaming model for mea-
surement queries with iterative refinement, modulating which
data collection functions run in-network and which ones
run at stream processors. While Sonata and MAFIA share
measurement flexibility as a goal, and both achieve it via
composability, MAFIA goes beyond Sonata in the array of
provided measurement primitives at switches. Sonata could
exploit our primitives to deploy richer queries or optimize their
execution plan based on resource requirements.

Finally, Allman et al. [39] underline the need for built-in



protocol support to aid measurements. They propose end-host
and hop-by-hop support to gather measurement data along a
packet’s path. However, their approach is limited as it focuses
on the host’s view of the network. Also, they do not provide
mechanisms to perform stateful processing of measurement
data in the data plane.

VII. CONCLUSIONS AND FUTURE WORK

We advocate that true software-defined measurement
should start with configurable and reusable primitives—basic
building-blocks that, when properly composed, can support a
wide variety of network measurements. That is, Measurements
As FIrst-class Artifacts.

We proposed a set of orthogonal primitives that can be
exported by switches to implement measurement tasks. We im-
plemented a MAFIA prototype and showed how our principled
approach is capable of deriving concise and easy to understand
specifications of measurement activity. We demonstrated, by
using our primitives, how a wide range of measurement tasks
can be easily solved using MAFIA. In future work, we plan
to explore the necessary abstractions and protocols to deploy
measurement tasks dynamically across a set of switches.
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