
1

Towards Consistent SDNs:

A Case for Network State Fuzzing

Apoorv Shukla1 S. Jawad Saidi2 Stefan Schmid3 Marco Canini4 Thomas Zinner1 Anja Feldmann2,5

1TU Berlin 2MPI-Informatics 3Faculty of Computer Science, University of Vienna 4KAUST 5Saarland University

Abstract—The conventional wisdom is that a software-defined
network (SDN) operates under the premise that the logically
centralized control plane has an accurate representation of the
actual data plane state. Unfortunately, bugs, misconfigurations,
faults or attacks can introduce inconsistencies that undermine
correct operation. Previous work in this area, however, lacks a
holistic methodology to tackle this problem and thus, addresses
only certain parts of the problem. Yet, the consistency of the
overall system is only as good as its least consistent part.

Motivated by an analogy of network consistency checking
with program testing, we propose to add active probe-based
network state fuzzing to our consistency check repertoire.
Hereby, our system, PAZZ, combines production traffic with
active probes to periodically test if the actual forwarding path
and decision elements (on the data plane) correspond to the
expected ones (on the control plane). Our insight is that active
traffic covers the inconsistency cases beyond the ones identified
by passive traffic. PAZZ prototype was built and evaluated on
topologies of varying scale and complexity. Our results show that
PAZZ requires minimal network resources to detect persistent
data plane faults through fuzzing and localize them quickly
while outperforming baseline approaches.

Index Terms—Consistency, Fuzzing, Network verification,
Software defined networking.

I. INTRODUCTION

The correctness of a software-defined network (SDN)

crucially depends on the consistency between the manage-

ment, the control and the data plane. There are, however,

many causes that may trigger inconsistencies at run time,

including, switch hardware failures [1], [2], bit flips [3]–[8],

misconfigurations [9]–[11], priority bugs [12], [13], control

and switch software bugs [14]–[16]. When an inconsistency

occurs, the actual data plane state does not correspond to

what the control plane expects it to be. Even worse, a

malicious user may actively try to trigger inconsistencies as

part of an attack vector.

Figure 1 shows a visualization inspired by the one by

Heller et al. [17] highlighting where consistency checks

operate. The figure illustrates the three network planes – man-

agement, control, and data plane – with their components.

The management plane establishes the network-wide policy

P , which corresponds to the network operator’s intent. To

realize this policy, the control plane governs a set of logical

rules (Rlogical) over a logical topology (T logical), which yield

a set of logical paths (P logical). The data plane consists of

the actual topology (T physical), the rules (Rphysical), and the

resulting forwarding paths (P physical).

Policy (P)
Traffic A should

take Path X

 Control Plane

Data Plane

Logical
Rules

(Rlogical)

[26-36]
(P ≣ Rlogical)
(P ≣ Plogical)

 [2, 21-25]
 (P ≣ Pphysical)

 [20]
(Plogical ≣ Pphysical)

Logical Paths
(Plogical)

Forwarding
Paths (Pphysical)

Logical
Topology (Tlogical)

+

 [4, 18, 19]
(Rlogical ≣ Rphysical)Physical

Topology (Tphysical)

+
Physical

Rules
(Rphysical)

Management
Plane

Figure 1: Overview of some of the relevant existing consistency checks.

Consistency checking is a complex problem. Prior work

has tackled individual subpieces of the problem as high-

lighted by Figure 1. Monocle [4], RuleScope [18], and

RuleChecker [19] use active probing to verify whether the

logical rules Rlogical are the same as the rules Rphysical of the

data plane. ATPG [2] creates test packets based on the control

plane rules to verify whether paths taken by the packets

on the data plane P physical are the same as the expected

path from the high-level policy P without giving attention

to the matched rules. VeriDP [20] uses production traffic

to only verify whether paths taken by the packets on the

data plane P physical are the same as the expected path from

the control plane P logical. NetSight [21], PathQuery [22],

CherryPick [23], and PathDump [24] use production traffic

whereas SDN Traceroute [25] uses active probes to verify

P ≡ P physical. Control plane solutions focus on verifying

network-wide invariants such as reachability, forwarding

loops, slicing, and black hole detection against high-level

network policies both for stateless and stateful policies. This

includes tools [26]–[36] that monitor and verify some or all

of the network-wide invariants by comparing the high-level

network policy with the logical rule set that translates to

the logical path set at the control plane, i.e., P ≡ Rlogical

or P ≡ P logical. These systems, however, only model the

network behavior which is insufficient to capture firmware

and hardware bugs as “modeling” and verifying the control-

data plane consistency are significantly different techniques.

Typically, previous approaches to consistency checking

proceed “top-down,” starting from what is known to the

management and control planes, and subsequently checking

whether the data plane is consistent. We claim that this is

insufficient and underline this with several examples (§II-C)

2

wherein data plane inconsistencies would go undetected. This

can be critical, as analogous to security, the overall system

consistency is only as good as the weakest link in the chain.

We argue that we need to complement existing top-

down approaches with a bottom-up approach. To this end,

we rely on an analogy to program testing. Programs can

have a huge state space, just like networks. There are two

basic approaches to test program correctness: one is static

testing and the other is dynamic testing using fuzz testing or

fuzzing [37]. Hereby, the latter is often needed as the former

cannot capture the actual run-time behavior. We realize that

the same holds true for network state.

Fuzz testing involves testing a program with invalid, un-

expected, or random data as inputs. The art of designing

an effective fuzzer lies in generating semi-valid inputs that

are valid enough so that they are not directly rejected by

the parser, but do create unexpected behaviors deeper in the

program, and are invalid enough to expose corner cases that

have not been dealt with properly. For a network, this corre-

sponds to checking its behavior not only with the expected

production traffic but with unexpected or abnormal packets.

However, in networking, what is expected or unexpected

depends not only on the input (ingress) port but also the

topology till the exit (egress) port and configuration, i.e., rules

on the switches. Thus, there is a huge state space to explore.

Relying only on production traffic is not sufficient because

production traffic may or may not trigger inconsistencies.

However, having faults that can be triggered at any point

in time, due to a change in production traffic, whether

malicious or accidental, is undesirable for a stable network.

Thus, we need fuzz testing for checking network consistency.

Accordingly, this paper introduces PAZZ, a methodology that

combines such capabilities with previous approaches to verify

SDNs against persistent data plane faults. Therefore, similar

to program testing, we ask: “How far to go with consistency

checks?”

Our Contributions:

• We identify and categorize the causes and symptoms of

data plane faults that are currently unaddressed to provide

some useful insights into the limitations of existing

approaches by investigating their frequency of occurrence.

Based on our insights, we make a case for fuzz testing

mechanism for campus and private datacenter SDNs (§II);

• We introduce a novel methodology, PAZZ which detects

and later, localizes faults by comparing control vs.

data plane information for all three components, rules,

topology, and paths. It uses production traffic as well as

active probes (to fuzz test the data plane state) (§III);

• We develop and evaluate a PAZZ prototype1 with multiple

experimental topologies representative of multi-path/grid

1PAZZ software and experiments with topologies and configs are made publicly

available at https://bitbucket.org/Apoorv1986/pazz/src/master/.

campus and private datacenter SDNs. Our results show

that fuzzing through PAZZ outperforms the baseline ap-

proach in all experimental topologies while consuming

minimal resources as compared to Header Space Analysis

(HSA) [28] to detect and localize data plane faults (§IV).

II. BACKGROUND & MOTIVATION

This section briefly navigates the landscape of faults and

reviews the symptoms and causes (§II-A) to set the stage for

the program testing analogy in networks (§II-B). Finally, we

highlight the scenarios of data plane faults manifesting as

inconsistencies (§II-C).

A. Landscape of Faults: Frequency, Causes and Symptoms

As per the survey by Zeng et al. [1], the primary causes

for abnormal network behaviors or failures in the order of

their frequency of occurrence are the following:

1) Software bugs: code errors, bugs, etc., 2) Hardware

failures or bugs: bit errors or bitflips, switch failures, etc., 3)

Attacks and external causes: compromised security, DoS/D-

DoS, etc., and 4) Misconfigurations: ACL /protocol miscon-

figs, etc.

In SDNs, the above causes still exist and are persistent [2]–

[4], [12]–[16], [38], [39]. We, however, realized that the

symptoms cited in [1] of the above causes can manifest either

as functional or performance-based problems on the data

plane. To clarify, the symptoms are either functional (reach-

ability, security policy correctness, forwarding loops, broad-

cast/multicast storms) or performance-based (high router’s

CPU utilization, congestion, latency/throughput, intermittent

connectivity). To abstract the analysis, if we disregard the

performance-based symptoms, we realize the functional prob-

lems can be reduced to the verification of network correct-

ness. Making the situation worse, the faults manifest in the

form of inconsistencies where the expected network state at

control plane is different to the actual data plane state.

A physical network or network data plane comprises of

devices and links. In SDNs, such devices are SDN switches

connected through links. The data plane of the SDNs is

all about the network behavior when subjected to inputs in

the form of traffic. Just like in programs, we need different

test cases as inputs with different coverage to increase code

coverage. Similarly, in order to dynamically test the network

behavior thoroughly, we need inputs in the form of traffic

with different coverage [40]. Historically, network correct-

ness or functional verification on the data plane has been

either path-based verification (network-wide) [20]–[25], [41]

or rule-based verification (mostly switch-specific) [2], [4],

[18], [19], [25], [42]. Path-based verification can be end-to-

end or hop-by-hop whereas rule-based verification performs

switch-by-switch verification. The idea of network coverage

brings us to the concept of Packet Header Space Coverage.

B. Packet Header Space Coverage: Active vs. Passive

We observe that networks just as programs can have

a huge distributed state space. Packets with their packet

https://bitbucket.org/Apoorv1986/pazz/src/master/

3

S0

S2

S1

S3
i

i’

e
 Covered

Src IPv4

D
st

 IP
v4

Covered

Dst Ports

D
st

 IP
v4

Header space
coverage from ingress
port i to egress port e

Header space coverage
from ingress port i’ to
egress port e

 Uncovered

Uncovered

23220

232

20

232

20

20 216

Figure 2: Example topology with two example ingress/egress port pairs (source-

destination pairs) and their packet header space coverage (w.r.t IPv4 addresses and

destination ports).

headers, including source IP, destination IP, port numbers,

etc., are the inputs and the state includes all forwarding

equivalence classes defined by the flow rules. Note, that

every pair of ingress-egress ports (source-destination pair)

can have different forwarding equivalence classes (FECs). We

use the term covered packet header space to refer to it. Our

motivation is that the FECs refer to parts of the packet header

space. For a given pair of ingress and egress ports (source-

destination pair), when receiving traffic on the egress port

from the ingress port, we can check if the packet is covered

by the corresponding “packet header space.” If it is within the

space it is “expected,” otherwise it is “unexpected” and, thus,

we have discovered an inconsistency due to the presence of

a fault on the data plane.

Consider the example topology in Figure 2. It consists of

four switches S0, S1, S2, and S3. Let us focus on two ingress

ports i and i′ and one egress port e. The figure also includes

possible packet header space coverage. For i to e, it includes

matches for the source and destination IPv4 addresses. For

i′ to e, it includes matches for the destination IPv4 address

and possible destination port ranges. Indeed, it is possible

to take into account other dimensions such as IPv6 header

space, source-destination MAC addresses.

When testing a network, if traffic adheres to a specific

packet header space, there are multiple possible cases. If we

observe a packet sent via an ingress port i and received at an

egress port e, then we need to check if it is within the covered

area; if it is not we refer to the packet as “unexpected” and

then, we have an inconsistency for that packet header space

caused by a fault. If a packet from an ingress port is within

the expected packet header space of multiple egress ports, we

need to check if the sequence of rules expected to be matched

and path(s) expected to be taken by the packet correspond to

the actual output port(s) on data plane. This is yet another

way of finding inconsistencies caused by faults.

Similar to program testing where negative test cases are

used to fuzz test, in networking, we should not only test

the network state with “expected” or production traffic, but

2In this tool, if the packet is received at the expected destination from a source, path

is considered to be the same.
3In this tool, authors claim that tool may detect match and action faults without

guarantee.
4In this tool, issues in only symmetrical topologies are addressed.

Type of monitoring/verification
Related work in
the data plane

Traffic Type
(Packet
header space
coverage)

Rule-based Path-based

ATPG [2] 2 Active (X) (X)

Monocle [4] Active (X) ×

RuleScope [18] Active (X) ×

RuleChecker [19]3 Active (X) ×

SDNProbe [42] Active (X) (X)

FOCES [41] Passive (X) (X)

VeriDP [20] Passive (X) (X)

NetSight [21] Passive (X) (X)

PathQuery [22] Passive (X) (X)

CherryPick [23]4 Passive (X) (X)

PathDump [24] Active (X) (X)

PAZZ Active, Passive X X

Table I: Classification of related work in the data plane based on the type of the

verification and the packet header space coverage. Xdenotes full capability, (X) denotes

a part of full capability, × denotes missing capability.

also with specially crafted probe packets to test corner cases

and “fuzz test” the network itself. In principle, there are

two ways for testing network forwarding: passive and active.

Passive corresponds to using the existing traffic or production

traffic while active refers to sending specific probe traffic.

The advantage of passive traffic is that it has low overhead

and popular forwarding paths are tested repeatedly. However,

production traffic may (a) not cover all cases (covers only

faults that can be triggered by production traffic only),

(b) change rapidly, and (c) have slow fault detection, as the

fraction of traffic triggering the faults is intermittent. Indeed,

malicious users may be able to inject malformed traffic that

may trigger faults. Thus, production traffic may not cover the

whole packet header space achievable by active probing.

Furthermore, we should also fuzz test the network state.

This is important as we derive our network state from the

information of the controller. Yet, this is not sufficient since

we cannot presume that the controller state is complete and/or

accurate. Thus, we propose to generate packets that are out-

side of the covered packet header space of an ingress/egress

port pair. We suggest doing this by systematically and contin-

uously or periodically testing the header space just outside of

the covered header space. For example, if port 80 is within the

covered header space, test for port 81 and 79. If x.0/17 is

in the covered header space, test for x.1.0.0 which is part

of the x.1/17 prefix. In addition, we propose to randomly

probe the remaining packet header space continuously or

periodically by generating appropriate test traffic. The goal

of active traffic generation through fuzzing is to detect the

faults identifiable by active traffic only.

Table I shows the existing data plane approaches on the

basis of a type of verification or monitoring in addition

to the packet header space coverage. We see that existing

data plane verification approaches are insufficient when it

comes to both path- and rule-based verification in addition

to ensuring sufficient packet header space coverage. In this

paper, our methodology PAZZ aims to ensure packet header

space coverage in addition to path- and rule-based verification

to ensure network correctness on the data plane and thus,

detecting and localizing persistent inconsistencies.

4

S1 Flow Table:
R1: x.1.1.1 - 15 -> fwd (1)

R3: x.1.1.64 - 79 -> fwd (1)
R4: x.1.1.1 - 31 -> fwd (2)

S2 Flow Table:
R1: x.1.1.0 - 63 -> fwd (1)

S3 Flow Table:
R1: x.1.1.0 - 63 -> fwd (1)

R2: x.1.1.33 -> fwd (1)

S1 Flow Table:
R1: x.1.1.0 - 15 -> fwd (1)
R2: x.1.1.31 -> fwd (1)
R3: x.1.1.65 - 79 -> fwd (1)
R4: x.1.1.0 - 31 -> fwd (2) Bank Server

Firewall

S1

S2

S3
3

1

2

3 2

1 2

1

Figure 3: Example misconfiguration with a hidden rule.

Expected/actual route ⇔ solid (blue)/dashed (red) arrows.

C. Data plane faults manifesting as inconsistencies

1) Faults identifiable by Passive Traffic: Type-p: To high-

light the type of faults, consider a scenario shown in Figure 3.

It has three OpenFlow-based SDN switches (S1, S2, and

S3) and one firewall (FW). Initially, S1 has three rules R1,

R3, and R4. R4 is the least specific rule and has the lowest

priority. R1 has the highest priority. Note the rules are written

in priority order.

Incorrect packet trajectory: We start by considering a

known fault [20], [21], [24]–hidden rule/misconfiguration.

For this, the rule R2 is added to S1 via the switch command

line utility. The controller will remain unaware of R2 since

R2 is a non-overlapping flow rule. Thus, it is installed without

notification to the controller [43]. [4], [12] have hinted at this

problem. As a result, traffic to IP x.1.1.31 bypasses the

firewall as it uses a different path.

Priority faults are another reason for such incorrect

forwarding where either rule priorities get swapped or are not

taken into account. The Pronto-Pica8 3290 switch with PicOS

2.1.3 caches rules without accounting for rule priorities [13].

The HP ProCurve switch lacks rule priority support [12].

Furthermore, priority faults may manifest in many forms:

e.g., they may cause trajectory changes or incorrect matches

even when the trajectory remains the same. Action faults

can be another reason where bitflip in the action part of the

flow rule may result in a different trajectory.

Insight 1: Typically, packet trajectory monitoring tools

only monitor the path.

Correct packet trajectory, incorrect rule matching: If we

add a higher priority rule in a similar fashion where the

path does not change, i.e., the match and action remains the

same as in the shadowed rule, then previous work will be

unable to detect it and, thus, it is unaddressed.5 Even if the

packet trajectory is correct but a wrong rule is matched, it

can create inconsistencies. Misconfigs, hidden rules, priority

faults, match faults (described next) may be the reason for

incorrect matches.

Next, we focus on match faults where an anomaly in the

match part of a forwarding flow rule on a switch causes the

packets to be matched incorrectly. We again highlight known

as well as unaddressed cases starting with a known scenario.

In Figure 3, if a bitflip,6 e.g., due to hardware problems,

5We validated this via experiments. OpenFlow specifications [43] state that if a non-

overlapping rule is added via the switch command-line, the controller is not notified.
6A previously unknown firmware bug in HP 5406zl switch.

S1 Flow Table:
R1: x.1.1.1 - 15 -> fwd (1)

R3: x.1.1.64 - 79 -> fwd (1)
R4: x.1.1.1 - 31 -> fwd (2)

S2 Flow Table:
R1: x.1.1.0 - 63 -> fwd (1)

S3 Flow Table:
R1: x.1.1.0 - 63 -> fwd (1)

R2: x.1.1.33 -> fwd (1)

S1 Flow Table:
R1: x.1.1.0 - 79 -> fwd (1)
R2: x.1.1.31 -> fwd (1)
R3: x.1.1.33 -> fwd (1)
R4: x.1.1.65 - 79 -> fwd (1)
R5: x.1.1.0 - 31 -> fwd (2)

Bank Server

Firewall

S1

S2

S3
3

1

2

3 2

1 2

1

Figure 4: Example misconfiguration with a hidden rule detectable by active probing

only. Expected/actual route ⇔ solid (blue)/dashed (red) arrows.

changes R1 from x.1.1.0/28 to match from x.1.1.0 up

to x.1.1.79, then traffic pertaining to x.1.1.17 is now

forwarded based on R1 rather than R4 and thus, bypasses

the firewall. This may still be detectable, e.g., by observing

the path of a test packet [20]. However, the bitflip in R1 also

causes an overlap in the match of R1 and R3 in switch S1 and

both rules have the same action, i.e., forward to port 1. Thus,

traffic to x.1.1.66 (supposed to be matched by R3) will be

matched by R1. If later, the network administrator removes

R3, the traffic pertaining to R3 still flows accordingly. This

violates the network policy. For example, packets can be

put into different queues or classes of service, leading to

unexpected performance variations for some flows, possibly

violating SLAs. It also leads to updating the wrong counters

at the switches. In this paper, we categorize the faults

detectable by the production traffic as Type-p faults.

Insight 2: Even if the packet trajectory remains the same,

the matched rules need to be monitored.

2) Faults identifiable by Active Traffic only: Type-a:

To highlight this class of faults, we focus on a hidden or

misconfigured rule R3 (in green) in Figure 4. This rule

matches the traffic corresponding to x.1.1.33 on switch

S1 and reaches the confidential bank server; however, the

expected traffic or production traffic does not belong to this

packet header space [38], [39], [44]. Therefore, we need to

generate probe packets to trigger such rules and thus, detect

their presence. This requires generating and sending traffic

corresponding to the packet header space that is not expected

by the control plane. We call this traffic as fuzz traffic in the

rest of the paper since it tests the network behavior with

unexpected packet header space. We categorize the faults

detectable by only the active or fuzz traffic as Type-a faults.

Insight 3: The tools that test rules check only rules

“known” to the control plane (SDN controller) by generating

active traffic for “known” flows.

Insight 4: Typically, active traffic for certain flows checks

behavior only if the path remains the same even when

matched rules may be different on the data plane.

III. PAZZ METHODOLOGY

Motivated by our insights gained in §II-C about the Type-p

and Type-a faults on the data plane resulting in inconsisten-

cies, we aim to take consistency checks further. To this end,

our methodology, PAZZ compares forwarding rules, topology,

and paths of the control and the data plane, using top-down

5

 Control Plane Component
(CPC)

 Consistency Tester

 Data Plane Component
(DPC)

OpenFlow
Channel

3. Send sampled
Actual Report

4. Send Actual
Report to
Control Plane
Component

5. Send Expected
Report based on
Actual Report

 Fuzzer

2. Compute &
Send Fuzz
Traffic

1. Send Corpus
to Fuzzer

 Production
 Traffic

Fuzz
Traffic OpenFlow

Switch

SDN
Controller

Figure 5: PAZZ Methodology.

and bottom-up approaches, to detect and localize data plane

faults.

PAZZ, derived from Passive and Active (fuZZ testing),

takes into account both production and probe traffic to

ensure adequate packet header space coverage. PAZZ

checks the matched forwarding flow rules as well as the

links constituting paths of various packet headers (5-tuple

microflow) present in passive and active traffic. To detect

faults, PAZZ collects state information (in terms of reports)

from the control and the data plane: PAZZ compares the

“expected” state reported by the control to the “actual” state

collected from the data plane. Figure 5 illustrates the PAZZ

methodology. It consists of four components:

1) Control Plane Component (CPC): Uses the current

controller information to proactively compute the packets

that are reachable between any/every source-destination

pair. It then sends the corpus of seed inputs to Fuzzer.

For any given packet header and source-destination pair,

it reactively generates an expected report that encodes the

paths and sequence of rules. (§III-B)

2) Fuzzer: Uses the information from CPC to compute the

packet header space not covered by the controller and

hence, by production traffic. It generates active traffic for

fuzz testing the network. (§III-C)

3) Data Plane Component (DPC): For any given packet

header and source-destination pair, it encodes the path

and sequence of forwarding rules to generate a sampled

actual report. (§III-A)

4) Consistency Tester: Detects and later, localizes faults

by comparing the expected reports from the CPC with the

actual reports from the DPC. (§III-D)

Now, we discuss in detail all components. To ease descrip-

tion, we follow a bottom-up order.

A. Data Plane Component (DPC)

To record the actual path of a packet and the rules that

are matched in forwarding it, we rely on tagging the packet

contained in active and production traffic. In particular, we

propose the use of a shim header that gives us sufficient space

Algorithm 1: Data Plane Tagging

Input : (p, s, i, o, r) for each incoming packet p and switch with ID s let i
be the inport ID and o the outport ID for packet p, r is the flow rule

used for forwarding.

Output: Tagged packet p if necessary with the Verify shim header.

// Is there already a shim header, e.g., (s,i) is not

an entry point or source port

1 if (p has no shim header) then

// Add shim header with “Ethertype” 2080,
initialize tag values- Verify_Port: entry point

hash, Verify_Rule: 1.

2 p.push_verify;

// Determine up ID from switch ID s and port ID i
3 up = s ‖ i;
// Bloom filter

4 p.Verify_Port← bloom(hash(up));
// Determine ur ID from rule ID r of table ID t

5 ur = s ‖ r ‖ t;
// Binary hash chain

6 p.Verify_Rule← hash(p.Verify_Rule, ur);
// Shim header has to be removed if (s, o) is exit point

7 if ((s, o) is exit point) then

8 sample;
9 if (p has no shim header) then

// For traffic injected between a

source-destination pair

10 p.push_verify;

11 Generate_report((s, o), p.Verify_Port, p.Verify_Rule,
p.header); p.pop_verify;

even for larger network diameters or large flow rule sets.

Indeed, INT [45] can be used for data plane monitoring; how-

ever, it is only applicable for P4 switches [46]. Unlike [20]–

[24], we use a custom shim header for tagging; therefore,

tagging is possible without limiting forwarding capabilities.

To avoid adding extra monitoring rules on the scarce TCAM,

which may also affect the forwarding behavior [22], [47], we

augment OpenFlow with new actions. Between any source-

destination pair, the new actions are used by all rules of

the switches to add/update the shim header if necessary

for encoding the sequence of inports (path) and matched

rules. To remove the shim header, we use another custom

OpenFlow action. To trigger submitting the actual report to

the Consistency Tester, we use sFlow [48] sampling. Indeed,

we can use any other sampling tool. Note sFlow is a packet

sampling technique so it samples packets (and not flows)

based on sampling rate and polling interval. For a given

source, the report contains the packet header, the shim header

content, and the egress port of the exit switch (destination).

Even with a shim header such as Verify, however, it is

impractical to encode the required information about each

port and rule in the path on the packet. Therefore, we rely on

a combination of Bloom filters [49] and binary hash chains.

For scalability, sampling is used before sending a report to

the Consistency Tester.

Data Plane Tagging: To limit the overhead, we insert

Verify shim header at layer-2. VerifyTagType is EtherType

for Verify header, Verify_Port (Bloom filter) encodes the

local inport in a switch, and Verify_Rule (binary hash chain)

encodes the local rules in a switch. Thus, the encoding is

done with the help of the Bloom filter and binary hash

chain, respectively. To take actions on the proposed Verify

6

1 2 1 2 1 2

S1 S2 S3

p.push_Verify;
p.Verify_Port ← bloom(hash(up));
p.Verify_Rule ← hash(p.Verify_Rule, ur);

p.Verify_Port ← bloom(hash(up);
p.Verify_Rule ← hash(p.Verify_Rule, ur);
p.pop_Verify;

p.Verify_Port ← bloom(hash(up));
p.Verify_Rule ← hash(p.Verify_Rule, ur);

Figure 6: Data plane tagging using Bloom filters and hashing.

shim header and to save TCAM space, we propose to

extend OpenFlow with four new actions: two for adding

(push_verify) and removing (pop_verify) the Verify shim

header and two for updating the Verify_Port (set_Verify_Port)

and Verify_Rule (set_Verify_Rule) header fields, respectively.

Since the header size of the Verify_Port and Verify_Rule

and tagging actions are implementation-specific, we explain

them in section §IV-A1, §IV-A2, respectively. Algorithm 1

explains the data plane tagging algorithm between a source-

destination pair. For each packet either from production or

active traffic (§III-C) entering the source inport, a Verify

shim header will be added automatically by the switch. For

each switch on the path, the tags in the packet: Verify_Port

and Verify_Rule fields, get updated automatically. Figure 6

illustrates the per-switch tagging approach. Once the packet

leaves the destination outport, the resulting report known as

the actual report is sent to the Consistency Tester (§III-D).

Note that if there is no Verify header, the Verify shim header

is pushed on the exit switch to ensure that any traffic

injected at any switch interface between a source-destination

pair gets tagged. To reduce overheads at the Consistency

Tester as well as on the switch, we employ sampling at

the egress port. We continuously or periodically test the

network as the data plane is dynamic due to reconfigurations,

link/switch/interface failures, and topology changes. Note,

periodic testing can also be executed by implementing timers.

B. Control Plane Component (CPC)

In principle, we can use the existing control plane mech-

anisms, including HSA [28], NetPlumber [29] and APVeri-

fier [36]. In addition to experiments in [36], our independent

experiments show that Binary Decision Diagram (BDD)-

based [50] solutions like [36] perform better for set op-

erations on headers than HSA [28] and NetPlumber [29].

In particular, we propose a novel BDD-based solution that

supports rule verification in addition to path verification

(APVerifier [36] takes into account only paths). Specifically,

CPC performs two functions: a) Proactive reachability and

corpus computation, and b) Reactive tag computation.

Proactive Reachability & Corpus Computation: We start

by introducing an abstraction of a single switch configuration

called switch predicate. In a nutshell, a switch predicate

specifies the forwarding behavior of the switch for a given

set of incoming packets, and is defined in turn by the

rule predicates. More formally, the general configuration

abstraction of a SDN switch s with ports 1 to n can be

described by switch predicates: Si,j where i ∈ {1, 2, ..., n}
and j ∈ {1, 2, ..., n} where n denotes the number of switch

ports. The packet headers satisfying predicate Si,j can be

forwarded from port i to port j only. The switch predicate is

defined via rule predicates: Ri,j which are given by the flow

rules belonging to the switch s and a flowtable t. Each rule

has an identifier that consists of a unique_id and table_id
representing the flowtable t in which the rule resides, in_port

array representing a list of inports for that rule, out_port
array representing a list of outports in the action of that rule

and the rule priority p. Based on the rule priority p, in_port
in the match part and out_port in the action part of a flow

rule, each rule has a list of rule predicates (BDD predicates)

that represent the set of packets that can be matched by

the rule for the corresponding inport and forwarded to the

corresponding outport.

Similar to the plumbing graph of [29], we generate a

dependency graph of rules (henceforth, called rule nodes)

called reachability graph based on the topology and switch

configuration which computes the set of packet headers

between any source-destination pair. There exists an edge

between the two rules a and b, if (1) out_port of rule a
is connected to in_port of b; and (2) the intersection of

rule predicates for a and b is non-empty. For computational

efficiency, each rule node keeps track of higher priority rules

in the same table in the switch. A rule node computes the

match of each higher priority rule, subtracting it from its own

match. We refer to this as the same-table dependency of rules

in a switch. In the following, by slightly abusing the notation,

we will use switch predicates Si,j and rule predicates Ri,j

to denote also the set of packet headers: {p1, p2, ..., pn} they

imply. Disregarding the ACL predicates for simplicity, the

rule predicates in each switch s representing packet header

space forwarded from inport i to outport j is given by Rfwd

i,j
.

The switch predicates are then computed as: Si,j = ∪Rfwd

i,j

More specifically, to know the reachable packet header

space (set of packet headers) between any source-destination

pair in the network, we inject a fully-wildcarded packet

header set h from the source port. If the intersection of the

switch predicate Si,j and the current packet header p is non-

empty, i.e., Si,j ∩ {p} 6= φ, the packet is forwarded to the

next switch until we reach the destination port. Thus, we can

compute reachability between any/every source-destination

pair. For caching and tag computation, we generate the in-

verse reachability graph simultaneously to cache the traversed

paths and rules matched by a packet header p between

every source-destination pair. After the reachability/inverse

reachability graph computation, CPC sends the current switch

predicates of the entry and exit switch pertaining to a

source-destination pair to Fuzzer as a corpus for fuzz traffic

generation (§III-C).

In case of a FlowMod action, the reachability/inverse

reachability graph and new corpus are re-computed. Recall

every rule node in a reachability graph keeps track of high-

7

priority rules in a table in a switch. Therefore, only a part

of the affected reachability/inverse reachability graph needs

to be updated in the event of rule addition/deletion. In the

case of rule addition, the same-table dependency of the rule

is computed by comparing the priorities of new and old rules

before it is added as a new node in the reachability graph. If

the priority of a new rule is higher than any rules and there is

an overlap in the match part, the new switch predicate: S′
i,j

as per the new rule predicate: R′fwd

i,j
is computed as:

S′
i,j

= R′fwd

i,j
∪ (Rfwd

i,j
−R′fwd

i,j
)

Reactive Tag Computation: For any given data plane report

corresponding to a packet header p between any source-

destination pair, we traverse the pre-computed inverse reach-

ability graph to generate a list of sequences of rules that

can match and forward the actual packet header observed

at a destination port from a source port. Note, there can be

multiple possible paths, e.g., due to multiple entry points

and per-packet or per-flow load balancing. For a packet

header p, the appropriate Verify_Port and Verify_Rule tags

are computed as per Algorithm 1. The expected report is

then sent to the Consistency Tester (§III-D) for comparison.

Note we can generate expected reports for any number of

source-destination pairs.

C. Fuzzer

Inspired by the code coverage-guided fuzzers like Lib-

Fuzz [51], we design a mutation-based fuzz testing com-

ponent called Fuzzer. Fuzzer receives the corpus of seed

inputs in the form of the switch predicates of the entry and

exit switch from the CPC for a source-destination pair. In

particular, the switch predicates pertaining to the inport of

the entry switch (source) and the outport of the exit switch

(destination) represent expected covered packet header space

containing the set of packet headers satisfying those predi-

cates. Fuzzer applies mutations to the corpus (Algorithm 2).

Where Can Most Faults Hide? Before explaining Algo-

rithm 2, we present a scenario to explain the packet header

space area where potential faults can be present. Consider

the example topology illustrated in Figure 2. Due to a huge

header space in IPv6 (128-bit), we decide to focus on the des-

tination IPv4 header space (32-bit) in a case of destination-

based routing. In principle, it is possible to consider IPv6

header space as the fuzzing mechanism remains the same.

We use Si, S1 and Se to represent covered packet header

space (switch predicates) of switches S0, S1 and S3 between

i-e (source-destination pair). Note there can be multiple paths

for the same packet header p. Now, assume there is only a

single path: S0 → S1 → S3, the reachable packet header

space or net covered packet header space area is given by

Si ∩ S1 ∩ Se. Note this area corresponds to the control

plane perspective so there may be more or less coverage

on the data plane. The production traffic is generated in

the area Si which depends on the expected rules of S0
at an ingress port i for a packet header p destined to e.

In principle, production traffic will cover the packet header

space area Si. Now, active traffic should be generated for the

Algorithm 2: Fuzzer

Input : Switch predicates of entry (Si) and exit Se switch for a

source-destination pair i-e
Output: fuzz_sweep_area, random_fuzz_area
// Generate fuzz traffic in the difference of covered

packet header space area between entry and exit

switch

1 fuzz_sweep_area← Se − Si;

2 residual_area← U − fuzz_sweep_area− Si;

3 random_fuzz_area← Φ;

// Generate fuzz traffic in completely uncovered packet

header space area randomly

4 while random_fuzz_area 6= residual_area do

5 fuzz ← random_choose(residual_area);

6 random_fuzz_area← random_fuzz_area
⋃

fuzz;

uncovered area U − Si(entryswitch) where U represents

the universe of all possible packet header space which is

20 to 232 for a destination IPv4 header space. As stated

in §II-B, we need to start with active traffic generation on

the boundary of the net covered packet header space area

between a source-destination pair as there is a maximum

possibility of faults in this area due to bitflips or “fat-finger”

errors while configuring the network. A packet will reach

e from i iff all rules on the switches in a path match it;

else it will be dropped either midway or on the first switch.

Therefore, for an end-to-end reachability, the ruleset on S0
and S3 should match the packet p contained in production

traffic belonging to the covered packet header space: Si∩Se.

This implies that we need to first generate active traffic in

the area: Se −Si and then randomly generate in the leftover

area. Traffic can, however, be also injected at any switch on

any path between a source-destination pair, thus the checking

needs to be done for different source-destination pairs.

We now explain the Algorithm 2 in the context of Figure 2.

For active or fuzz traffic generation, if there is a difference

in the covered packet header space areas of S0 and S3,

we first generate traffic in the area, i.e., Se − Si denoted

by fuzz_sweep_area (Line 1). Recall, there is a high

probability that there may be hidden rules in this area as

the header space coverage of the exit switch may be bigger

than the same at the entry switch. Later, we generate traffic

randomly in the residual packet header space area, i.e., U −
fuzz_sweep_area−Si denoted by residual_area (Lines 2-

6). We generate traffic randomly in the area as this is mostly,

a huge space and fault/s can lie anywhere. The fuzz traffic

generated randomly is given by the completely uncovered

packet header space area denoted by random_fuzz_area.

Thus, the fuzz traffic that the Fuzzer generates belongs to

the packet header space area given by fuzz_sweep_area
and random_fuzz_area. It is worth noting that not all

of the packets generated by the fuzz traffic are allowed

in the network due to a default drop rule in the switches.

Therefore, if some packets in the fuzz traffic are matched,

the reason can be attributed to either the presence of faulty

rules, wildcarded rules or hardware/software faults to match

such traffic. This also highlights that the fuzz traffic may not

cause network congestion as there is no forwarding rule to

8

match most of the fuzz traffic. As discussed previously, there

is another scenario where the traffic gets injected at one of

the switches on the path between a source-destination pair

and may end up getting matched in the data plane. Verify

header is pushed at the exit switch if it is not already present

(§III-A, §IV-A2) and thus, the packets still get tagged in

the data plane to be sent in the actual report. However, the

CPC may generate empty Verify_Rule and Verify_Port tags

as the traffic is unexpected. In such cases, the fault is still

detected but may not be localized automatically (§III-D).

Furthermore, Fuzzer can be positioned to generate traffic at

different inports to detect more faults in the network between

any/every source-destination pair. If production traffic does

not cover all expected rules at the ingress or entry switch,

Fuzzer design can be easily tuned to also generate traffic

for critical flows. Our evaluation confirms that an exhaustive

active traffic generator, which randomly generates traffic in

the uncovered area, performs poorly against PAZZ in real

world topologies (§IV-E). Note if the network topology or

configuration changes, the CPC sends the new corpus to the

Fuzzer and Algorithm 2 is repeated. We can continuously or

periodically test with fuzz traffic for any changes.

D. Consistency Tester

After receiving an actual report from the data plane,

the Consistency Tester queries the CPC for its expected

report for the packet header and the corresponding source-

destination pair in the actual report. Once Consistency Tester

has received both reports, it compares both reports as per

Algorithm 3 for fault detection and the localization. To avoid

confusion, we use Verify_Porta, Verify_Rulea tags for the ac-

tual data plane report and Verify_Porte, Verify_Rulee tags for

the corresponding expected control plane report respectively.

If Verify_Rule tag is different for a packet header and a pair

of ingress and egress ports, then the fault is detected and

reported (Lines 3-4). Note that we avoid the Bloom filter false

positive problem by first matching the hash value for the Ver-

ify_Rule tag. Therefore, the detection accuracy is high unless

a hash collision occurs in Verify_Rule field (§IV-A3). Once

a fault is detected, Consistency Tester uses the Verify_Port

Bloom filter for localization of faults where the actual path is

different from the expected path, i.e., the Verify_Porta Bloom

filter is different from the Verify_Porte Bloom filter (Lines 5-

10). Therefore, Verify_Porta is compared with the per-switch

hop Verify_Port in the control plane or Verify_Portei for the

ith hop starting from the source inport to the destination

outport. This hop-by-hop walkthrough is done by traversing

the reachability graph at the CPC hop-by-hop from the source

port of the entry switch to the destination port of the exit

switch. As per the Algorithm 3, the bitwise logical AND

operation between the Verify_Porta and the Verify_Portei is

executed at every hop. It is, however, important to note that

if actual path was same as expected path, i.e., Verify_Porte =
Verify_Porta even when actual rules matched were different

on the data plane, i.e., Verify_Porte 6= Verify_Porta (Lines

12-15), the localization of faulty Rf gets tricky as it can be

Algorithm 3: Consistency Tester (detection, localization)

Input : Actual and expected report containing the Verify_Rulea, Verify_Porta
and Verify_Rulee, Verify_Porte tags respectively for a packet p
pertaining to a flow (5-tuple)

Output: Detected and localized faulty switch Sf or Faulty Rule Rf .

1 if No Actual report received in x seconds then

// Blackhole reported as no actual report was

generated in x seconds for p.
2 Report blackhole by generating alarm

// Different rules were matched on data plane.

3 else if (Verify_Rulea 6= Verify_Rulee) then

// Fault is detected and reported.

4 Report fault

// Different path was taken on data plane.

5 if (Verify_Porta 6= Verify_Porte) then

// Localize the fault.

6 for i← 0 to n by 1 do

7 if Verify_Porta ∩ Verify_Port
ei

= Verify_Port
ei

then

8 No problems for this switch hop

// Previous switch wrongly routed the

packet.

9 else

10 Sf ← Si−1

// Path consistent even rules matched are

different.

11 else

// Localize Type-p match fault.

12 if Verify_Rulee 6= 0 then

13 Go through the different switches hop-by-hop to find Rf

// Localize Type-a fault.

14 else

15 Rf lies in S0 else go through the different switches

hop-by-hop

// Different path was taken on data plane.

16 else if (Verify_Porta 6= Verify_Porte) then

// Type-p action fault is detected and reported.

17 Report fault

// Localize Type-p action fault.

18 for i← 0 to n by 1 do

19 if Verify_Porta ∩ Verify_Port
ei

= Verify_Port
ei

then

20 No problems for this switch hop

// Previous switch wrongly routed the packet.

21 else

22 Sf ← Si−1

23 else

24 No fault detected

either a case of Type-p match faults (e.g., bitflip in match

part) (Lines 12-13) or Type-a fault (Lines 14-15). Hereby, it

is worth noting that there will be no expected report from

the CPC in the case of unexpected fuzz traffic. Therefore,

Consistency Tester checks if Verify_Rulee 6= 0 (Line 12).

If true, localization can be done through hop-by-hop manual

inspection of expected switches or manual polling of expected

switches (Lines 12-13) else the Type-a fault may be localized

to the entry switch as it has a faulty rule that allows the

unexpected fuzz traffic in the network (Lines 14-15). There

is another scenario where the actual rules matched are same

as expected but the path is different (Lines 16-22). This is

a case of Type1-action fault (e.g., bitflip in the action part

of the rule). In this case, the expected and actual Verify_Port

Bloom filter can be compared and thus, Type-p action fault

is detected and localized. Note action fault is Type-p as it is

caused in production traffic.

9

Binary hash chain in Verify_Rule gives PAZZ better accu-

racy, however, we lose the ability to automatically localize

the Type-p match faults where the path remains the same

and rules matched are different as the Verify_Port Bloom

filter remains the same. To summarize, detection will happen

always, but localization can happen automatically only in

the case of two conditions holding simultaneously: a) when

traffic is production; and b) when there is a change in path

since Verify_Port Bloom filter will be different. In most

cases, fuzz traffic is not permitted in the network. Recall

active traffic can be injected from any switch in between

a source-destination pair. In such cases, the Rf will still be

detected and can be localized by either manual polling of the

switches or hop-by-hop traversal from source to destination.

Blackholes for critical flows can be detected as Consistency

Tester generates an alarm after a chosen time of some

seconds if it does not receive any packet pertaining to that

flow (Lines 1-2). For localizing silent random packet drops,

MAX-COVERAGE [52] algorithm can be implemented on

Consistency Tester which can be co-located with the CPC or

can be a standalone module.

IV. PAZZ PROTOTYPE AND EVALUATION

A. Prototype

1) DPC: Verify Shim Header: We decided to use a 64-bit

(8 Byte) shim header on layer-2: Verify. To ensure sufficient

space, we limit the link layer MTU to a maximum of 8,092

Bytes for jumbo frames and 1,518 Bytes for regular frames.

Verify has three fields, namely:

•VerifyTagType: 16-bit EtherType to signify Verify header.

•Verify_Port: 32-bit encoding the local inport in a switch.

•Verify_Rule: 16-bit encoding the local rule/s in a switch.

We use a new EtherType value for VerifyTagType to ensure

that any layer-2 switch on the path without our OpenFlow

modifications will forward the packet based on its layer-2

information. The Verify shim header is inserted within the

layer 2 header after the source MAC address, just like a

VLAN header. In presence of VLAN (802.1q), the Verify

header is inserted before the VLAN header. Note Verify

header is backward compatible with legacy L2 switches, and

transparent to other protocols.

2) DPC: New OpenFlow Actions: The new actions ensure

that there is no interference in forwarding as no extra rules are

added. To ensure efficient use of the shim header space, we

use a Bloom filter to encode path-related information in the

Verify_Port field and binary hash chains to encode rule-level

information in the Verify_Rule field. A binary hash chain adds

a new hash-entry to an existing hash-value by computing a

hash of the existing hash-value and the new hash-entry and

then storing it as the new value. The Verify_Port field is a

Bloom filter which will contain all intermediate hash results

of the path including the first (ingress switch) and last value

(exit switch). This ensures that we can test the initial value

as well as the final path efficiently.

•set_Verify_Port: Computes hash of the unique identifier (up)

of the current switch ID and its inport ID and adds the result

to the Bloom filter in the Verify_Port field.

•set_Verify_Rule: Computes hash of the globally unique

identifier (ur) of the current flow rule, i.e., switch ID and rule

ID (uniquely identifying a rule within a table), flow table ID

with the previous value of the Verify_Rule to form a binary

hash chain.

•push_verify: Inserts a Verify header if needed, initializes

the value in Verify_Rule to 1 and the value of Verify_Port is

the hash of up. It is immediately followed by set_Verify_Rule

and set_Verify_Port. If there is no Verify header, push_verify

is executed at the entry and the exit switch between a source

and destination pair.

•pop_verify: Removes the Verify header from the tagged

packet.

push_verify should be used, if there is no Verify header

for a) all packets entering a source inport or b) all packets

leaving the destination outport (in case, if any traffic is

injected between a source-destination pair) just before a

report is generated to the Consistency Tester. For packets

leaving the destination outport, pop_verify should be used

only after a sampled report to the Consistency Tester has

been generated. To initiate and execute data plane tagging, the

actions set_Verify_Port and set_Verify_Rule are prepended to

all flow rules in the switches as first actions in the OpenFlow

“action list” [43]. On the entry and exit switch, action

push_verify is added as the first action. On the exit switch,

pop_verify is added as an action once the report is generated.

Recall, our actions do not change the forwarding behavior per

se as the match part remains unaffected. However, if one of

the actions gets modified unintentionally or maliciously, it

may have a negative impact but gets detected and localized

later. Notably, set_Verify_Rule encodes the priority of the

rule and flow table number in the Verify_Rule field and thus,

providing support for rule priorities/cascaded flow tables.

3) Bloom filter & Hash Function: We use Verify_Port

Bloom filter for the localization of detected faults. In an

extreme case from the perspective of operational networks

like datacenter networks or campus networks, for a packet

header and a pair of ingress and egress port, if CPC computes

i different paths with n hops in each of the paths, the

probability of a collision in Bloom filter and hash value

simultaneously will be given by: (0.6185)m/n × p(i)

In our case, (0.6185)m/n = (0.6185)32/n using the Bloom

filter false positive formula [49] as m = 32 (Bloom filter

size) of the Verify_Port field and n is the network diameter

or the number of switches in a path. p(i) is the probability

of collision of the hash function computed using a simple

approximation of the birthday attack formula:

p(i) = i2/2H = i2/217

i is the number of different paths, H is 216 for 16-bit

Verify_Rule field hash.

For the 16-bit Verify_Rule hash operation, we used Cyclic

Redundancy Check (CRC) code [53]. For the 32-bit Ver-

ify_Port Bloom filter operations, first, three hashes are com-

10

Figure 7: Left to right: Experimental grid topologies with 4, 9 and 16 switches

respectively where fuzz and production traffic enter from the leftmost switch and leave

at the rightmost switch in each topology.

Src Dest

T2

A2

C3

A4

T4

A3

T3

A1

T1

C1 C2 C4

A5 A6

T5 T6

A7 A8

T7 T8

Src Src

Figure 8: 4-ary fat-tree (20 switches) experimetal topology with expected paths in

dotted blue line from three different sources (Src) to Destination (Dst). T< x >: ToR

(Top-of-Rack), A< x >: Aggregate and C< x >: Core switches respectively. Paths

for each source-destination pair: T2 A2 C3 A4 T4 A3 T3 (dotted blue), T6 A6 C3 A4

T4 A3 T3 (dashed green), T8 A8 C3 A4 T4 A3 T3 (solid red).

puted as: gi(x) = h1(x) + i · h2(x) for i = 0, 1, 2 where

h1(x) and h2(x) are the two halves of a 32-bit Jenkins hash

of x. After, we use the first 5 bits of gi(x) to set the 32-bit

Bloom filter for i = 0, 1, 2 [49].

PAZZ Components: We implemented DPC atop Open

vSwitch (OvS) Version 2.6.90 software switches. The cus-

tomized OvS switches and the fuzz/production traffic gener-

ators run in vagrant VMs. Currently, the prototype supports

both OpenFlow 1.0 and OpenFlow 1.1. We chose Ryu

SDN controller. Python-based Consistency Tester, Java-based

CPC, and Python-based Fuzzer communicate via Thrift.

B. Experiment Setup

We evaluate PAZZ on 4 topologies: a) 3 grid topologies

(Figure 7) of 4, 9 and 16 switches respectively with varying

complexities to ensure diversity of paths, and b) 1 datacenter

fat-tree (4-ary) topology of 20 switches with multipaths

(Figure 8). Experiments were conducted on an 8 core 2.4GHz

Intel-Xeon CPU machine and 64GB of RAM. For scalability

purposes, we modified and translated the Stanford backbone

configuration files [54] to equivalent OpenFlow rules as per

our topologies, and installed them at the switches to allow

multi-path destination-based routing. We used our custom

script to generate configuration files for the four experimental

topologies. The configuration files ensured the diversity of

paths for the same packet header. Columns 1-4 in Table II

illustrate the parameters of the four experimental topologies.

We randomly injected faults on randomly chosen OvS

switches in the data plane where each fault belonged to

different packet header space (in 32-bit destination IPv4

address space) either in the production or fuzz traffic header

Topology #Rules #Paths
Path
Length

Reachability
graph
computation
time

Fuzzer Execu-
tion Time

4 switches (grid) ~5k ~24k 2 0.64 seconds ~1 ms

9 switches (grid) ~27k ~50k 4 0.91 seconds ~1.2 ms

16 switches (grid) ~60k ~75k 6 1.13 seconds ~3.2 ms

4-ary fat-tree (20
switches)

~100k ~75k 6 1.15 seconds ~7.5 ms

Table II: Columns 1-4 depict the parameters of four experimental topologies.

Column 5 depicts the reachability graph computation time by the CPC for the

experimental topologies proactively by the CPC. Represents an average over 10 runs.

Column 6 depicts the Fuzzer execution time to compute the packet header space for

generating the fuzz traffic for the corresponding experimental topologies. Represents

an average over 10 runs.

space. In particular, we injected Type-p (match/action faults)

and Type-a faults. ovs-ofctl utility was used to insert

the faults in the form of high-priority flow rules on random

switches. Therefore, we simulated a scenario where the

control plane was unaware of these faults in the data plane.

We made a pcap file of the production traffic generated from

our Python-based script that crafts the packets. In addition,

we made a pcap of the fuzz traffic generated from the Fuzzer.

The production and fuzz traffic pcap files were collected

using Wireshark and replayed in parallel and continuously

at the desired rate using Tcpreplay [55] with infinite loops to

test the network continuously. To execute PAZZ periodically

instead of continuously, there is an API support to implement

timers with desired timeouts as per the deployment scenario.

For sampling, we used sFlow [48] with a polling interval of 1

second and a sampling rate of 1/100, 1/500 and 1/1000. Note,

the polling interval and sampling rate can be modified as

per the deployment scenario. The sampling was done on the

egress port of the exit switch in the data plane so the sampled

actual report reaches the Consistency Tester and thus, avoids

overwhelming it. Note each experiment was conducted for

ten times for a randomly chosen source-destination pair.

Workloads: For 1 Gbps links between the switches in the 4

experimental topologies: 3 grid and 1 fat-tree (4-ary), the

production traffic was generated at 106 pps (packets per

second). In parallel, fuzz traffic was generated at 1000 pps,

i.e., 0.1% of the production traffic.

C. Evaluation Strategy

For a source-destination pair, our experiments are pa-

rameterized by: (a) size of network (4-20 switches), (b)

path length (2-6), (c) configs (flow rules from 5k-100k),

(d) number of paths (24k-75k), (e) number (1-28) and kind

of faults (Type-p, Type-a), (f) sampling rate (1/100, 1/500,

1/1000) with polling interval (1 sec), and (g) workloads,

i.e., throughput (106 pps for production and 1000 pps for

fuzz traffic). Note, due to space constraints, we removed the

results of 1/500 sampling rate. Our primary metrics of interest

are fault detection with localization time, and comparison of

fault detection/localization time in PAZZ against the baseline

of exhaustive traffic generation approach and Header Space

Analysis (HSA) [28].

In particular, we ask these questions:

Q1. How does PAZZ perform under different topologies and

configs of varying scale and complexity? (§IV-D)

11

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 0 100 200 300 4000
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

Detection Time (s)

C
D

F

● 16 Switches
9 Switches
4 Switches
fat−tree

(a) Results of detection time for all topologies

0 50 100 0 100 200 300 400 5000
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Detection Time (s)

C
D

F

4 Switches: PAZZ
4 Switches: Exhaustive

(b) Results of 4-switch grid topology

0 50 100 150 200 0 200 400 6000
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

Detection Time (s)

C
D

F

9 Switches: PAZZ
9 Switches: Exhaustive

(c) Results of 9-switch grid topology

50 100 150 200 0 200 400 6000
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

Detection Time (s)

C
D

F

16 Switches: PAZZ
16 Switches: Exhaustive

(d) Results of 16-switch grid topology

0 50 100 150 0 100 200 300 4000
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

Detection Time (s)

C
D

F
fat−tree: PAZZ
fat−tree: Exhaustive

(e) Results of 4-ary fat-tree (20-switch) topology

0 100 200 300 0 200 400 600 8000
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

Detection Time (s)

C
D

F

fat−tree: PAZZ
fat−tree: Exhaustive

(f) Results of 3 source-destination pairs in fat-tree

Figure 9: a) For a source-destination pair, CDF of Type-p and Type-a fault detection time by PAZZ in all 4 experimental topologies for sampling rate of 1/100 (left), and 1/1000

(right) respectively.

b), c), d), e) For a source-destination pair, comparison of fault detection time by PAZZ (blue) and exhaustive packet generation approach (red) in all 4 experimental topologies

(4-switch, 9-switch, 16-switch and 4-ary fat-tree respectively). In each figure, left to right illustrates sampling rate of 1/100 (left), 1/1000 (right) respectively.

f) For 3 source-destination pairs, comparison of fault detection time (in seconds) by PAZZ (blue) and exhaustive packet generation approach (red) in 4-ary fat-tree topology.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Bugs

0

20

40

60

80

100

120

140

160

D
e
te

c
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Pazz

Exhaust

(a) Results of 4-ary fat-tree (20-switch) with 1/100 sampling rate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Bugs

0

50

100

150

200

250

300

D
e
te

c
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Pazz

Exhaust

(b) Results of 4-ary fat-tree (20-switch) with 1/1000 sampling rate

Figure 10: a) Median fault detection time in PAZZ with quartiles vs baseline for a single source-destination pair in 4-ary fat-tree topology with sampling rate of 1/100.

b) Median fault detection time in PAZZ with quartiles vs baseline for a single source-destination pair in 4-ary fat-tree topology with sampling rate of 1/1000.

Q2. How does PAZZ compare to the strawman case of ex-

haustive random packet generation for a single and multiple

source-destination pairs? (§IV-E)

Q3. How much time does PAZZ take to compute reachability

graph as compared to Header Space Analysis [28]? (§IV-F)

Q4. How much time does PAZZ take to generate active traffic

for a source-destination pair and how much overhead does

PAZZ incur on the links? (§IV-G)

Q5. How much packet processing overhead does PAZZ incur

on varying packet sizes? (§IV-H)

D. PAZZ Performance

Figure 9a illustrates the cumulative distribution function

(CDF) of the Type-p and Type-a faults detected in the

four different experimental topologies with the parameters

mentioned in Table II. As expected, in a grid 16-switch

topology with 60k rules and 75k paths, PAZZ takes only 25

seconds to detect 50% of the faults and 105 seconds to detect

all of the faults in case of sampling rate 1/100 and polling

interval of 1 second (left in Figure 9a). For the same sampling

rate of 1/100, in the case of 4-ary fat-tree topology with 20

switches containing 100k rules and 75k paths, PAZZ detects

50% of the faults in 40 seconds and all faults in 160 seconds.

As the production traffic was replayed at 106 pps in parallel

with the fuzz traffic replayed at 1000 pps, the Type-p faults in

the production traffic header space (35% of total faults) were

detected faster in a maximum time of 24 seconds for all four

topologies as compared to the Type-a faults (65% of total

faults) in the fuzz traffic header space which were detected

in a maximum time of 420 seconds.As the experiment was

conducted ten times, time taken is the mean of the ten values

to detect a fault pertaining to a packet header space. Overall,

12

the detection time difference was marginal.

Localization Time: As per Algorithm 3, the production

traffic-specific faults after detection were automatically lo-

calized within a span of 50 µsecs for all four experimental

topologies. The localization of faults pertaining to fuzz traffic

was manual as there was no expected report from the CPC.

Hereby, the localization was done for two cases: a) when the

fuzz traffic entered at the ingress port of the entry switch and

b) when the fuzz traffic entered in between a pair of ingress

and egress ports. For the first case, the localization of each

fault happens in a second after the fault was detected by the

Consistency Tester as the first switch possessed a flow rule

to allow such traffic in the network. For the second case,

i.e., where fuzz traffic was injected from between the pair

of ingress and egress ports took approx. 2-3 minutes after

detection for manual localization as the path was constructed

after hop-by-hop inspection of the switch rules.

To compute the CPU usage in PAZZ, we measured the CPU

time required for computing expected paths, test and detect

inconsistency per sFlow sample analyzed by the Consistency

Tester (brain of PAZZ) for the 4-ary fat-tree scenario. Our

single-threaded implementation required 4.271 ms (mean),

and 4.397 ms (median) with a minimum of 0.259 ms, and a

maximum of 7.310 ms for each sample on a single core of the

Intel Xeon E5-2609 2.40GHz CPU. For the memory usage,

topology and configuration are the main factors. The fat-tree

scenario with 100k rules requires the maximum resident set

size (RSS) of 129MB. See §IV-F for memory usage of CPC.

E. Comparison to Exhaustive Packet Generation

We compare the fault detection time of PAZZ which uses

Fuzzer against exhaustive packet generation approach. For a

fair comparison, the exhaustive packet generation approach

generates the same number of flows randomly and at the same

rate like PAZZ. Figures 9b, 9c, 9d and 9e illustrate the fault

detection time CDF in 4-switch, 9-switch, 16-switch and 4-

ary fat-tree (20-switch) experimental topologies respectively.

Two figures for each experimental topology illustrates the

results for two different sampling rates of 1/100, and 1/1000

(left and right) respectively. The solid blue line indicates

PAZZ which uses Fuzzer and the dotted red line indicates

exhaustive packet generation approach. As expected, we

observe that PAZZ performs better than exhaustive packet

generation approach. PAZZ provides an average speedup of

2-3 times. We observe in all cases, 50% of the faults are

detected in a maximum time of ~50 seconds or less than

a minute by PAZZ. Note we excluded the Fuzzer execution

time (§IV-G) in the plots. It is worth mentioning that PAZZ

will perform much better if we compare against a fully

exhaustive packet generation approach which generates 232

flows in all possible destination IPv4 header space. Hereby,

the detected faults are Type-a as they require active probes

in the uncovered packet header space. Since, PAZZ relies on

production traffic to detect the Type-p faults and thus, we get

rid of the exhaustive generation of all possible packet header

space.

Multiple Source-Destination Pairs & Header Cover-

age: We observed the similar results for different source-

destination pairs when we placed Fuzzer and production

traffic generator at different sources in parallel for a different

header space coverage. Figure 9f shows the fault detection

time comparison of PAZZ against exhaustive packet genera-

tion approach for 3 different source-destination pairs in the 4-

ary fat tree topology (Figure 8). Note, PAZZ can be extended

to Layer-2 and Layer-4 headers.

Figures 10a, 10b illustrate the median fault detection

time with quartiles in PAZZ against the baseline for 4-

ary fat-tree topology (20 switches) with 100k rules for a

single source-destination pair for sampling rates: 1/100 and

1/1000 respectively. Note, 1-10 bugs belong to the Type-

p category, i.e., detected by production traffic replayed at

106pps and 11-28 belong to the Type-a category, i.e., detected

by fuzz traffic replayed at 1000 pps. We observe that in only

1 or 2 bugs out of total 28 bugs, PAZZ performs similar to the

exhaust baseline as the detection is dependent on the sFlow

sampling. Furthermore, the single-threaded implementation

of Consistency Tester can analyze only a single flow at any

point of time. Overall, we outperform the exhaust baseline

in all four experimental topologies.

F. Reachability Graph Computation vs Header Space Anal-

ysis (HSA) [28]

Table II (Column 5) shows the reachability graph computa-

tion in all experimental topologies by the CPC for an egress

port. To observe the effect of evolving configs, we added

additional rules to various switches randomly. We observe

that CPC always computes the reachability graph in < 1s.

We compare CPC against the state-of-the-art Header Space

Analysis (HSA) [28] that can be used to generate reacha-

bility graphs to generate test packets and compute covered

header space. HSA is also used by NetPlumber [29] and

ATPG [2]. We observe that HSA library has scalability issues

due to poor support for set operations on wildcards unlike

BDDs [50]. Indeed, we reconfirm this by running a simple

reachability experiment between a source-destination pair in

the fat-tree topology of 20 switches with 100k rules in total.

In this experiment, we compare the resource usage of the

Python implementation of HSA library with the CPC of

PAZZ which uses BDDs. HSA requires in excess of 206GB

of memory to compute the 10 reachable paths between two

ports, while the CPC requires only 1.5GB of memory.

G. Fuzzer Execution Time & Overhead

Execution Time: Table II (Column 6) illustrates the time

taken by Fuzzer to compute the packet header space for fuzz

traffic in the four experimental topologies after it receives the

covered packet header space (corpus) from the CPC. Since,

we considered destination-based routing hence, the packet

header space computation was limited to 32-bit destination

IPv4 address space in the presence of wildcarded rules. When

13

some of the rules were added to the data plane, the CPC

recomputed the corpus, the new corpus was sent to the Fuzzer

which recomputed the new fuzz traffic within a maximum

time of 7.5 milliseconds.

H. DPC Overhead

We generated different packet sizes from 64 bytes to

1500 bytes at almost Gbps rate on the switches running the

DPC software of PAZZ and the native OvS switches. We

added flow rules on our switches to match the packets and

tag them by the Verify shim header using our push_verify,

set_Verify_Rule and set_Verify_Port actions in the flow rule.

Then, we measured the average throughput over 10 runs.

We observe that the Verify shim header and the tagging

mechanism incurred negligible throughput drop as compared

to the native OvS. However, a throughput drop of 1.1.% is

observed only on the entry switch/exit switch as push_verify

actions happen on the entry switch/exit switch to insert the

Verify shim header. Furthermore, sFlow sampling is done at

the exit switch only. On the contrary, set_Verify_Port and

set_Verify_Rule just set the Verify_Port and Verify_Rule fields

respectively and have no observable impact. Thus, PAZZ

introduces minimal packet processing overheads atop OvS.

V. RELATED WORK

In addition to the related work covered in §I that includes

the existing literature based on [17] and Table I, we now

will navigate the landscape of related works and compare

them to PAZZ in terms of the Type-p and Type-a faults

which cause inconsistency (§II). The related work in the

area of control plane [26]–[36] either check the controller-

applications or the control-plane compliance with the high-

level network policy. These approaches are insufficient to

check the physical data plane compliance with the control

plane. As illustrated in Table I, we navigate the landscape

of the data plane approaches and compare them with PAZZ

based on the ability to detect Type-p and Type-a faults. It is

worth noting that the approaches either test the rules or the

paths whereas PAZZ tests both together. In the case of Type-

p match faults (§II-C1) when the path is consistent even if

a different rule is matched, path trajectory tools [20]–[25],

[41] fail. The approaches based on active-probing [2], [4],

[18], [19], [25], [42] do not detect the Type-a faults (§II-C2)

caused by hidden or misconfigured rules on the data plane

which only match the fuzz traffic. These tools, however, only

generate the probes to test the rules known or synced to the

controller. Such Type-a faults are detected by PAZZ.

VI. DISCUSSION: HOW FAR TO GO?

Motivated by our analysis of existing faults which cause

inconsistency in SDNs and the fact that network consistency

is only as good as its weakest link, we have argued that we

need to take consistency checks further. Using an analogy to

program testing, we proposed a novel “bottom-up” method-

ology, making the case for network state fuzzing.

However, the question of “how far to go?” in terms of

consistency checks is a non-trivial one and needs further

 PAZZ
(Rlogical ≣ Rphysical)

Policy (P)
Traffic A should

take Path X

Control Plane

Data Plane

Logical
Rules

(Rlogical)
Logical
Paths

(Plogical)

Forwarding
Paths (Pphysical)

Logical
Topology (Tlogical)

+

Physical
Topology (Tphysical)

+Physical
Rules

(Rphysical)

Management
 Plane

 PAZZ
(Tlogical≣ Tphysical)

 PAZZ
(Plogical ≣ Pphysical)

Figure 11: PAZZ provides coverage on the forwarding flow rules, topology and paths.

attention. In particular, while methodologies such as PAZZ

provide a framework to systematically find (and subsequently

remove) faults, in theory, they raise a question of how much

resources to invest. Indeed, we observe that providing full

coverage of forwarding flow rules, topology, and forwarding

paths is inherently expensive: Consider a simplistic linear

network of n = 4 switches with two links between each

switch. Assume IP traffic enters from a source and exits on a

destination, and each switch stores a simple forwarding rule:

switch Si for i = {1, 2, 3...n} bases its forwarding decisions

solely on the ith least significant bit of the destination IP

address: packets of even bits are forwarded to the upper link

(up) and packets of odd bits to the lower (lo) link. While such

a configuration requires only a small constant number of rules

per switch, the number of possible paths is exponential in n:

the set of paths is given by {up, lo}n−1.

In addition to the combinatorial complexity of testing

static configurations, we face the challenge that both the

(distributed) control plane and the data plane state (as

well as possibly the network connecting the controllers to

the data plane elements) evolve over time, possibly in an

asynchronous (or even stateful [26]) and hard to predict

manner. This temporal dimension exacerbates the challenge

of identifying faults, raising the question “how frequently to

check”.

Finally, the question of finding faults can go beyond

deciding on the right amount of resources to invest: as any

traffic-based testing introduces the inherent “Schrödinger’s

cat” problem that tagged traffic may not be subject to the

same treatment as the untagged one.

We note that current trends towards programmable data

planes [46] and hardware [56] may aid in solving some of

the issues this paper raises. INT [45] in P4 specifically tries

to solve the problem of network monitoring but is yet to be

made scalable for the whole network and is limited to the

P4 switches. Still, leveraging programmability, future SDNs

will encompass even more possibilities of faults with a mix of

vendor-code, reusable libraries, and in-house code. Yet, there

will no longer be a common API, i.e., OpenFlow. As such the

general problem will persist and we will have to explore how

to extend the PAZZ methodology to programmable networks.

Overall, as illustrated in Figure 11, PAZZ checks consis-

tency at all levels between control and the data plane, i.e.,

P logical ≡ P physical, T logical ≡ T physical, and Rlogical ≡ Rphysical.

14

VII. CONCLUSION & FUTURE WORK

This paper presented PAZZ, a novel network verification

methodology that automatically detects and localizes the data

plane faults manifesting as inconsistencies in SDNs. PAZZ

periodically fuzz tests the packet header space and compares

the expected control plane state with the actual data plane

state. The tagging mechanism tracks the paths and rules at

the data plane while the reachability graph at the control

plane tracks paths and rules to help PAZZ in verifying con-

sistency. Our evaluation of PAZZ over real network topologies

and configurations showed that PAZZ efficiently detects and

localizes the faults causing inconsistencies while requiring

minimal data plane resources (e.g., switch rules and link

bandwidth).

Currently, we do not handle transient faults, packet rewrit-

ing and checking of backup rules which lay the groundwork

for our future work. For improving the performance of

PAZZ further, we consider multithreading at the Consistency

Tester will allow multiple flows to be checked in parallel.

For DPC, Data Plane Development Kit (DPDK) or P4 can

improve DPC performance. Distributed SDN controller and

P4-specific hardware [46], [56] design and implementation

will also be a part of our future work.

VIII. ACKNOWLEDGEMENT

We thank Georgios Smaragdakis and our anonymous re-

viewers for their helpful feedback. This work and its dis-

semination efforts were conducted as a part of Verify project

supported by the German Bundesministerium für Bildung

und Forschung (BMBF) Software Campus grant 01IS17052.

REFERENCES

[1] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “A Survey Of Network

Troubleshooting,” Stanford University, Tech. Rep. TR12-HPNG-061012, 2012.

[2] ——, “Automatic test packet generation,” in ACM CoNEXT, 2012.

[3] P. Gawkowski and J. Sosnowski, “Experiences with software implemented fault

injection,” in Architecture of Computing Systems (ARCS), 2007.

[4] P. Perešíni, M. Kuźniar, and D. Kostić, “Monocle: Dynamic, Fine-Grained Data

Plane Monitoring,” in ACM CoNEXT, 2015.

[5] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild: a large-

scale field study,” in ACM SIGMETRICS Performance Evaluation Review, 2009.

[6] Z. Al-Ars, A. J. van de Goor, J. Braun, and D. Richter, “Simulation based analysis

of temperature effect on the faulty behavior of embedded drams,” in Proceedings

International Test Conference 2001 (Cat. No. 01CH37260). IEEE, 2001.

[7] NetworkWorld, “Cisco says router bug could be result of ‘cosmic

radiation‘ ... Seriously?” https://www.networkworld.com/article/3122864/

cisco-says-router-bug-could-be-result-of-cosmic-radiation-seriously.html, 2016.

[8] Y. Yankilevich and G. Malchi, “Tcam soft-error detection method and apparatus,”

2017, US Patent App. 15/390,465.

[9] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding bgp misconfigura-

tion,” in ACM CCR, 2002.

[10] UpGuard, “Cloud leak: Wsj parent company dow jones exposed customer data,”

https://www.upguard.com/breaches/cloud-leak-dow-jones/.

[11] Dyn.com, “Con-ed steals the ’net’,” http://dyn.com/blog/coned-steals-the-net/.

[12] M. Kuźniar, P. Perešíni, and D. Kostić, “What you need to know about sdn flow

tables,” in The Passive and Active Measurement (PAM) conference, 2015.

[13] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow: Dependency-

aware rule-caching for software-defined networks,” in ACM SOSR, 2016.

[14] J. Rexford, “SDN Applications,” in Dagstuhl Seminar 15071, 2015.

[15] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostic, “A SOFT Way

for Openflow Switch Interoperability Testing,” in ACM CoNEXT, 2012.

[16] M. Kuzniar, P. Peresini, and D. Kostić, “Providing reliable fib update acknowl-

edgments in sdn,” in ACM CoNEXT, 2014.

[17] B. Heller, J. McCauley, K. Zarifis, P. Kazemian et al., “Leveraging SDN layering

to systematically troubleshoot networks,” in ACM HotSDN, 2013.

[18] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li et al., “Is every flow on the right

track?: Inspect SDN forwarding with RuleScope,” in IEEE INFOCOM, 2016.

[19] P. Zhang, C. Zhang, and C. Hu, “Fast testing network data plane with

rulechecker,” in Network Protocols (ICNP). IEEE, 2017.

[20] P. Zhang, H. Li et al., “Mind the gap: Monitoring the control-data plane

consistency in software defined networks,” in ACM CoNEXT, 2016.

[21] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown, “I

Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot

Networks,” in USENIX NSDI, 2014.

[22] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker, “Compiling Path Queries,”

in USENIX NSDI, 2016.

[23] P. Tammana, R. Agarwal, and M. Lee, “CherryPick: Tracing Packet Trajectory

in Software-Defined Datacenter Networks,” in ACM SOSR, 2015.

[24] ——, “Simplifying datacenter network debugging with pathdump,” in USENIX

OSDI, 2016.

[25] K. Agarwal, J. Carter, and C. Dixon, “SDN traceroute : Tracing SDN Forwarding

without Changing Network Behavior,” in ACM HotSDN, 2014.

[26] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “Buzz: Testing context-

dependent policies in stateful networks,” in USENIX NSDI, 2016.

[27] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King,

“Debugging the Data Plane with Anteater,” in SIGCOMM, 2011.

[28] P. Kazemian, G. Varghese, and N. McKeown, “Header Space Analysis: Static

Checking for Networks,” in USENIX NSDI, 2012.

[29] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. Mckeown, and S. Whyte, “Real

Time Network Policy Checking Using Header Space Analysis,” in USENIX NSDI,

2013.

[30] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and

A. Vahdat, “Libra: Divide and Conquer to Verify Forwarding Tables in Huge

Networks,” in USENIX NSDI, 2014.

[31] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, “A NICE Way to

Test Openflow Applications,” in USENIX NSDI, 2012.

[32] C. Scott, A. Wundsam, B. Raghavan, A. Panda et al., “Troubleshooting blackbox

sdn control software with minimal causal sequences,” in ACM CCR, 2015.

[33] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:

Verifying Network-Wide Invariants in Real Time,” in USENIX NSDI, 2013.

[34] A. Fogel, S. Fung et al., “A general approach to network configuration analysis.”

in USENIX NSDI, 2015.

[35] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese, “Checking

Beliefs in Dynamic Networks,” in USENIX NSDI, 2015.

[36] H. Yang and S. S. Lam, “Real-Time Verification of Network Properties Using

Atomic Predicates,” in IEEE/ACM Transactions on Networking, 2016.

[37] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: whitebox fuzzing for security

testing,” in Comm. of the ACM, 2012.

[38] P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to detect a compromised

sdn switch,” in Network Softwarization (NetSoft), 2015. IEEE, 2015.

[39] G. Pickett, “Staying persistent in software defined networks,” in Black Hat, 2015.

[40] G. Varghese, “Technical perspective: Treating networks like programs,” in CACM,

2015.

[41] P. Zhang, S. Xu, Z. Yang, H. Li, Q. Li, H. Wang, and C. Hu, “Foces: Detecting

forwarding anomalies in software defined networks,” in ICDCS. IEEE, 2018.

[42] Y. Ke, H. Hsiao, and T. H. Kim, “SDNProbe: Lightweight Fault Localization in

the Error-Prone Environment,” in ICDCS. IEEE, 2018.

[43] OpenFlow Spec, “https://www.opennetworking.org/images//openflow-switch-v1.

5.1.pdf,” 2015.

[44] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network: Attacking an

sdn with a compromised openflow switch,” in Nordic Conference on Secure IT

Systems. Springer, 2014.

[45] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker, “In-band

network telemetry via programmable dataplanes,” in ACM SIGCOMM, 2015.

[46] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:

Programming Protocol-independent Packet Processors,” in ACM CCR, 2014.

[47] H. Zhang, C. Lumezanu, J. Rhee, N. Arora, Q. Xu, and G. Jiang, “Enabling Layer

2 Pathlet Tracing through Context Encoding in Software-Defined Networking,”

in ACM HotSDN, 2014.

[48] S. Panchen, P. Phaal, and N. McKee, “Inmon corporation’s sflow: A method for

monitoring traffic in switched and routed networks,” in RFC 3176, 2001.

[49] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance: building a

better bloom filter,” in ESA. Springer, 2006.

[50] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” in

IEEE Trans. Comput., 1986.

[51] LLVM.org, “Llvm Compiler Infrastructure: libfuzzer: a library for coverage-

guided fuzz testing,” http://llvm.org/docs/LibFuzzer.html, 2019.

[52] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, “Detection and

localization of network black holes,” in IEEE INFOCOM, 2007.

[53] G. Castagnoli, J. Ganz, and P. Graber, “Optimum cycle redundancy-check codes

with 16-bit redundancy,” in IEEE Transactions on Communications. IEEE, 1990.

[54] P. Kazemian, “Hassel-public,” https://bitbucket.org/peymank/hassel-public/, 2016.

[55] A. Turner and M. Bing, “Tcpreplay: Pcap editing and replay tools for* nix,”

http://tcpreplay.sourceforge.net, 2005.

[56] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,

H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure accelerated

networking: Smartnics in the public cloud,” in USENIX NSDI, 2018.

https://www.networkworld.com/article/3122864/cisco-says-router-bug-could-be-result-of-cosmic-radiation-seriously.html
https://www.networkworld.com/article/3122864/cisco-says-router-bug-could-be-result-of-cosmic-radiation-seriously.html
https://www.upguard.com/breaches/cloud-leak-dow-jones/
http://dyn.com/blog/coned-steals-the-net/
https://www.opennetworking.org/images//openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images//openflow-switch-v1.5.1.pdf
http://llvm.org/docs/LibFuzzer.html
https://bitbucket.org/peymank/hassel-public/
http://tcpreplay. sourceforge. net

	Introduction
	 Background & Motivation
	Landscape of Faults: Frequency, Causes and Symptoms
	Packet Header Space Coverage: Active vs. Passive
	Data plane faults manifesting as inconsistencies
	Faults identifiable by Passive Traffic: Type-p
	Faults identifiable by Active Traffic only: Type-a

	Pazz Methodology
	Data Plane Component (DPC)
	Control Plane Component (CPC)
	Fuzzer
	Consistency Tester

	Pazz Prototype and Evaluation
	Prototype
	DPC: Verify Shim Header
	DPC: New OpenFlow Actions
	Bloom filter & Hash Function

	Experiment Setup
	Evaluation Strategy
	Pazz Performance
	Comparison to Exhaustive Packet Generation
	Reachability Graph Computation vs Header Space Analysis (HSA) Kazemian2012
	Fuzzer Execution Time & Overhead
	DPC Overhead

	Related Work
	Discussion: How far to go?
	Conclusion & Future Work
	Acknowledgement
	References

