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Abstract—We present a per-flow packet sampling method that
enables the real-time classification of high-speed network traffic.
Our method, based upon the partial sampling of each flow (i.e.,
performing sampling at only early stages in each flow’s lifetime),
provides a sufficient reduction in total traffic (e.g., a factor of
five in packets, a factor of ten in bytes) as to allow practical
implementations at one Gigabit/s, and, using limited hardware
assistance, ten Gigabit/s.

I. I NTRODUCTION

Accurate real-time identification of network-based trafficis
an important factor for solving difficult network management
problems including network-security, accounting, trafficengi-
neering, and new class-of-service offerings.

Traditionally, traffic classification was realised by simply
inferring the controlling application’s identity from theuse of
TCP or UDP port numbers under the assumption that most
applications consistently use ‘well-known’ ports. However,
this technique is no longer effective because many applications
are increasingly using ephemeral port numbers [1].

Recent research on Internet traffic classification has brought
many interesting ideas and methods that do not rely on ‘well-
known’ port numbers. Most of these newer schemes classify
traffic by recognizing statistical patterns in externally observ-
able characteristics. Particularly, alongside IntrusionDetection
Schemes (IDS) such as Snort [2], there have been a number
of flow-classification mechanisms discussed in the literature
(e.g., Li et al. [3], Bernaille et al. [4] and Crotti et al. [5])
that are able to provide high accuracy with access to only a
limited number of packets from each flow.

However, in order to collect flow features and classify
several hundreds of thousands of concurrent flows (which
is typical of high-speed links), these schemes are associated
with significant consumption of memory and computational
resources. There are in fact definite trade-offs to be made
between the classification performance and the resource con-
sumption of the actual implementation [6].

In this paper we present a new method of inline, real-time,
classification for high-speed networks. Our method, based
upon the partial sampling of each flow, permits sufficient
reduction in total traffic (e.g., a factor of five in packets, a
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factor of ten in bytes) to just that traffic required to permit
practical implementations at one Gigabit/s, and, using limited
hardware assistance, ten Gigabit/s.

There already exists a prodigious quantity of work on the
sampling of streams of packets; for example, Duffield [7]
provides an excellent review of the field. This research differs
from most sampling techniques in that we specifically wish
to target the firstJ packets of each flow within a traffic-
multiplex. By focusing upon only a fixed number of packets
early within each flow we can discard all remaining packets of
any flow. Our approach provides the compliment to a number
of existing network (application) classification schemes —
permitting their realization at high speed.

We consider that our approach to flow-sampling permits
the implementation of such traffic schemes for the future of
advanced network monitoring, network resource management,
anomaly detection, application-specific strategies and network
auditing activities.

II. M ETHODOLOGY

This section gives an overview of the design of the per-
flow packet sampling scheme. This scheme is shown dia-
grammatically in Figures 1 and 2. The scheme operates by
defining a time window of lengthW and identifying the
first J packets from each flow that occur within that window
(typically several seconds long). As can be seen the scheme is
structured into two levels. The first is the sampling mechanism
which operates at the per-packet level (Figure 1) and the
second is the memory allocation algorithm (Figure 2) which
operates on a per-window level (and thus the time scale is
several orders of magnitude higher) and sets the parameters
required in the first level (specifically themj , j = 1, . . . , J).

In this work, we define a flow as a bi-directional stream
of packets identified by the usual IP five-tuple: source and
destination addresses, IP protocol, and source and destination
ports.

At the per-packet level every packet initially has its flow
identifier extracted (i.e., the IP tuple). This identifier isthen
used to query the first Bloom filter to determine if it has been
seen before (a Bloom filter may be considered a lossy memory
device as will be explained in detail later in Section III). If it
has been seen before then the second Bloom filter is queried
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Fig. 2. Per-window level of the sampling scheme.

and so on until either a negative response is returned or all the
Bloom filters return a positive response. A negative response
in the jth filter indicates that this is thejth packet from this
flow (in an ideal case) and it is thus selected for sampling. In
addition, this IP tuple is added to the Bloom filter, so that the
next packet from this flow will obtain a positive answer from
this filter. In the case that all the Bloom filters return a positive
answer then (ideally) this is not one of the firstJ packets in the
flow and is discarded. Figure 3 shows the pseudo-code for the
described algorithm. As will be explained later, the amountof
IP tuples that thejth Bloom filter can hold is directly related
to the amount of memory,mj , assigned to this filter. The aim
of the per-window level is to optimally divide a central block
of memory,M , into J different portions. At the per-window
level an estimate of the optimal memory allocation for the
next window is required. As this is based on the number of
IP tuples that will be stored in each Bloom filter,nj , at the
end of thenextwindow a prediction of these values is needed.
This is discussed in detail in Section IV.

III. PER-PACKET LEVEL SAMPLING

A Bloom filter is a simple space-efficient probabilistic data
structure for representing a subsetS = {x1, x2, ..., xn} of n
elements of some universeU in order to support membership
queries. A Bloom filter is implemented as an array ofm bits,
initially all set to 0, usesk hash functions mapping elements

let P = current packet
let f = flow identifier of P
for i := 1 .. J
b := BloomFilter[i]
if query(b, f) = true
if i = J

discard(P)
break

else
add(b, f)
sample(P)
break

Fig. 3. Algorithm for updating the Bloom filters within the time window.

in S to [0, ...,m− 1], and supports two basic operations:add
andquery.

The index functions are traditionally assumed to be hash
functions with the standard assumptions that they are random,
uniform, and independent, though these assumptions can be
replaced with universal hashing arguments [8].

Given an elementx ∈ U , a Bloom filter supports the
operationadd(x) which uses the hash functions to generate
k indices into the array and sets the corresponding bits to 1.

The operationquery(y) tests if an elementy ∈ U belongs
to the setS by computing thek indices fory and checking
whether all referenced bits are 1. A negative query clearly
indicates that the element is not in the Bloom filter, but a
positive query may be due to a false positive; the case in
which the queried element was not added to the Bloom filter,
but all k queried bits are one (due to other additions).

We now introduce the theory required for selecting the
appropriate dimensions of the bloom filters. First a theoretical
expression will be constructed and then progressively relaxed
to allow easy online implementation. The theory behind Bloom
filters is well known but is repeated here as this particular
application has several deviations from the usual situation.

During an insertion, the probability that a certain bit is not
set by a certain hash function is1 − 1/m. Considering allk
hash functions, the probability that a certain bit is not setis:

P (bit not set) =

(

1 −
1

m

)k

(1)

If i (distinct) elements have already been added then the
probability that a particular bit is still 0 is:

P (bit not set\i) =

(

1 −
1

m

)ki

(2)

And so, when the filter containsi elements, the probability
of a false positive (i.e., allk bits have been set) is:

P (f.p.\i) =

(

1 −

(

1 −
1

m

)ki
)k

(3)

It can be shown [9] that if a Bloom filter is designed to
hold at mostn (distinct) elements then the optimal value ofk



is ln 2(m/n). This value minimizes the probability of a false
positive after alln elements have been added to the filter.
However, in this application we are interested in the number
of false positives that occur as the Bloom filter is being filled.
Consider the start of a new flow. Querying the first filter with
the identifier from that flowshouldobtain a negative answer
(if there is no false positive), thus the flow identifier will be
included in the Bloom filter. Subsequent packets from this flow
will definitelyobtain a positive answer and so will be shunted
onto the next Bloom filter for consideration (multiple filters
will be considered later in this section). Thus, for analyzing
the number of false positives, with respect to this Bloom filter,
only the first packet from a new flow need to be considered. In
fact, each first packet can cause exactly one false positive with
probability given by Equation 3. Therefore, we can formulate
the expected number of false positives for the first filter,E[F1],
by summing over the total number of flowsn, which gives:

E[F1] =

n
∑

i=1

(

1 −

(

1 −
1

m

)ki
)k

(4)

We now consider the case for multiple Bloom filters.
Suppose there areJ Bloom filters arranged such that any
flow identifier that obtains a match in the first filter is tested
for a match in the second and so on until either no match
is found (and so this flow identifier is recorded in that filter
and the current packet gets sampled) or all the filters report
a match (and so the current packet is discarded). Assuming
a flow with a number of packets greater than the number of
filters, ideally thejth packet from this flow should cause a
match in all the filters between the first up to thej−1th, while
the jth filter should return a negative answer. However, there
is the possibility that a false positive has previously occurred
in one of the firstj − 1 filters, in which case thejth packet
will be considered by thej + 1th filter (or discarded if it
exhausts all the filters). In this case there will be fewer packets
sampled in this flow than desired. In general, for a given flow
f , the number of sampled packets is bounded by the minimum
betweenf ’s packet count andJ minus the number of false
positives that affectsf . Thus a false positive is equivalent to
a sampling error and the expected number of false positives
E[F ] over all the Bloom filters is the appropriate measure to
use in evaluating the system:

E[F ] =

J
∑

j=1

nj
∑

i=1

(

1 −

(

1 −
1

mj

)ki
)k

(5)

where nj is the recordednumber of flows with (at least)j
packets andmj is the memory assigned to thejth Bloom
filter. It should be noted thatnj will differ from the actual
number of flows with (at least)j packets due to two factors;
the first is that false positives in thej−1th filter will effectively
be treated as flows of lengthj (thus increasingnj) and the
second is that false positives may occur in thejth filter (thus
reducingnj). The effect of these factors will be examined in
Section V.

In our application, we are clearly interested to find a con-
figuration of the filter parameters that minimizes the number
of false positives (i.e., Equation 5). In Section IV we offera
detailed description of an algorithm that computes an estimate
of nj and from that derives the optimal allocation of memory
for each filter (mj). Here we just anticipate one result from that
section: the ratiomj/nj is constant for any filterj (thereforek
is the same across the filters); and we focus on the parameterk
which constitutes a complicated factor for accuracy: too many
or too few hash functions lead to suboptimal performance.

One approach to minimizing the expected false positives is
to differentiate Equation 5 with respect tok and set it equal
to 0 to find the global minimum. This method gives us the
non-discrete optimal choice ofk, but it should be noted thatk
has to be an integer value. Rounding to the nearest integer is
a reasonable fix but does not always result in the best discrete
k. However, Dillinger et al. [10] in their work on probabilistic
verification of finite-state transition systems, have reported that
the value ofk that minimizes Equation 5 for a givenmj/nj

(independent ofj) can be estimated using a fitted curve:

km/n = ⌈3.8(m
n

+4.2)
−1 m

n
ln 2⌉ (6)

Note that we now use this formula to computek in
Equation 5 because we assume the ratiomj/nj is constant
as will be shown in Section IV.

A. Alternatives to Bloom filters

One alternative to Bloom filter is the Counting Bloom
filter [11], where each entry in the filter is not a single bit
but rather a small counter. This modification to the standard
Bloom filter supports aremove operation which allows the
number of stored elements to change over time. Even though
this would appear ideal in the current application as flows are
constantly starting and finishing, it is not appropriate because
another storage mechanism would be required to maintain
a state for each flow along with its identifier. In fact, such
information is needed to remove the flows from the counting
Bloom filter after a time out has been reached. This additional
mechanism would add complexity, while we desire to design
a simple one and easily implementable in hardware. More
importantly, it would contrast with the principles behind our
scheme where the main idea is to avoid maintaining per-flow
information by exploiting the space efficiency of Bloom filters
in combination with a time window that excludes the necessity
of removing elements from the filters (except at the end of each
interval when the filters are emptied).

Bloom filters are not the only probabilistic data structure
that can be used to realize the packet sampling scheme. We
briefly comment on the use of Multistage filter [12] andk-ary
sketch [13] (although an in depth comparison of these methods
is beyond the scope of this paper).

A different approach to using a bank of Bloom filters is
the Multistage filter (a variation of Counting Bloom filter).A
Multistage filter is composed ofd hash stages that operate in
parallel. A stage is a table ofb counters which is indexed by
a hash function computed on the flow identifier. Each stage



uses an independent hash function. When a packet comes in,
a hash function is computed on its IP tuple for each stage and
the indexed counters are incremented by one. If a packet maps
to counters ofJ or more atall d stages then this indicates that
J packets or more have already been seen for this flow and
so this packet is discarded.

In the Multistage filter, there is the possibility that the
counters are incremented by more than one flow (i.e., a
collision). When a new flow starts, its first packet might map
to d counters that are shared with other flows. This condition
leads to sample fewer packets for this flow than desired. The
main problem for using this data structure in our application is
that it is possible that not even a single packet from a certain
flow is sampled (i.e., when alld counters areJ or more).
However, when using a chain of Bloom filters, the event of
a false positive in one of the Bloom filter is not likely to
cause a false positive on a later filter of the chain because
the hash functions are chosen independently at random for
each filter; this makes the method more robust to the errors of
the underlying data structure. Even though the overall number
of collisions in the Multistage filter has been found to be
lower [12], the chain of Bloom filters is preferable in this
application due to the nature of those false positives.

A k-ary sketch is similar to the Multistage filter. It consists
of H hash tables of sizem. The hash functions for each hash
table are assumed to be chosen independently at random from
a class of 2-universal hash functions. The sketch is stored as an
H ×m table of registersT [i][j], i ∈ [H], j ∈ [m]. Denote the
hash function for theith table byhi. Given a flow identifier
x, a k-ary sketch supports the operationinsert(x) which
increments the count of buckethi(x) by one for each hash
table. LetD =

∑

j∈[m] T [0][j] be the sum of all updates to the
sketch (we arbitrarily use hash table 0 as all hash tables sum
to the same value). If aninsert(x) operation is performed
for each flow identifier in a packet stream, then for any given
flow identifier in a packet stream, for each hash table the value
U i

x = T [i][hi(x)]−D/m
1−1/m constitutes an unbiased estimator for

the packet countCx of the flow identified byx. A sketch
can then provide a highly accurate estimateUest

x for any flow
identifier x, by taking the median of theH table estimates.
In our situation, we would not perform an insert operation
for every flow identifier, because we are only interested to
count up toJ packets for each flow. Therefore, given a flow
identifierx, before updating the sketch we could computeUest

x

and compare its value withJ : if less then the array is updated
and the packet is sampled, otherwise the packet is discarded.
For the current application, thek-ary sketch presents the same
kind of problem as the Multistage filter does: ifUest

x is in error
at the beginning of a new flow then all the packets belonging
to this flow will be discarded.

B. Per-packet level implementation

The abundance of flipflops and ease with which pipelines
can be constructed within FPGAs make FPGAs well suited for
the implementation of the algorithm we present in this paper.
As packet data pass through a series of pipeline stages, the

components of the flow identifier can be picked out of the
packet at line rate. This is a low cost operation in an FPGA.
Once the complete flow identifier has been collected, theJ×k
hash functions compute their values in parallel.

It is a feature of some hash functions, such as CRC,
that a result is available in as few as 1 cycle and since
static memories have similarly low access latencies, in many
cases the overall result will be ready even before the whole
packet has been received. Computationally, the most expensive
component of this process is the calculation of the hash,
so system speed (i.e., clock speed) is limited only by the
complexity of the hash functions chosen. For example, a 10
Gigabit/s link can be readily accommodated by a pair of 64
bit datapaths clocked at 200 MHz. Such clock frequency is
readily feasible in modern FPGA architectures, and there are
plenty of hash algorithms that can be made to run at this speed.

Dharmapurikar et al. demonstrated in [14] the feasibility
of implementing Bloom filters based packet classification
algorithms at OC-192 link rates. The algorithm published there
was capable of handling 38 Mpkts/s in hardware using external
static RAM. Similarly, the algorithm presented here could
make use of external static RAM.

IV. PER-WINDOW LEVEL MEMORY ALLOCATION

This section considers the segmentation of the available
memory for allocation to each Bloom filter (i.e., themj in
Equation 5). There are two issues to be dealt with here;
first, Equation 5 is quite cumbersome and is computationally
expensive to calculate. Second, the quantitiesnj are unknown
because they correspond to the number of flows with at least
j packets thatwill be seen in the next window, and so these
has to be predicted.

The optimum value for themj is subject to the constraint
that there is a fixed amount of memory available:

J
∑

j=1

mj = M (7)

where M is the total amount of memory available. As far
as the authors know a closed form solution for Equation 5
subject to the constraint in Equation 7 is not possible (even
using the simplifications known in the literature for the Bloom
filter theory). Thus the MATLAB constrained minimization
algorithmfminconwas applied to find the optimal allocation of
themj in order to minimize the number of false positives. The
optimummj are very close to those achieved whenmj/nj =
mi/ni with i 6= j. This simplification facilitates easy online
estimation. Specifically, given that the (near) optimal value of
mj is achieved whenmj/nj = mi/ni with i 6= j implies:

mj − αnj = 0 for j = 1, . . . , J (8)

whereα is the required ratio ofmj/nj . Equations 7 and 8 are
linear in mj and may be easily and quickly solved.

The second problem, predictingnj is now discussed. There
are many time-series forecasting algorithms which can all
be applied to this situation (see for example [15]). How-
ever, considering the need for online implementation of these



algorithms, we regard the Auto Regressive (AR) model as
appropriate for this situation. An AR model consists of linearly
regressing on the time-series of interest using the model:

n̂j(k) =

p
∑

i=1

θinj(k − i) + ǫj(k) (9)

where n̂j(k) is the predicted value ofnj(k) at time (i.e.,
window) k, θi is the ith parameter associated withith re-
gressor,nj(k − i), ǫj(k) is a residual, andp is the order of
the model. The order of the model may be estimated using
the standard Box Jenkins approach by examining the auto-
correlation function and the partial-autocorrelation function of
the time-series (see [15] for full details). Given the orderof the
model, the parameters may then be estimated using ordinary
least squares or in the presence of outliers some form of robust
least squares (although this would increase the complexityof
the implementation).

One complication is that the value ofnj(k−1) is itself only
available at the very instant it is required (at the very end of
the last window and start of the current window). Thus, no
sampling can take place during the time required to compute
the estimate for the memory allocation. In order to avoid this
situation from arising, either the previous estimate ofnj(k)
may used in place:

n̂j(k) = θ1n̂j(k − 1) +

p
∑

i=2

θinj(k − i) + ǫj(k) (10)

or an estimate based on a partial count ofnj(k − 1) may be
used (e.g., if we are half way through the previous window
we could simply double the count as an unbiased estimate of
nj(k − 1)).

Finally, consider the value ofW . We can assume thatnj

depends linearly onW , and so Equation 5 becomes a function
of W in nj(W ). Given an acceptable level of false positives
(subjectively selected) the appropriate value ofW can be
easily estimated by use of a search algorithm (as the number
of false positives is a function of the window size).

V. RESULTS

Dataset overview

In order to evaluate the sampling scheme, we use traffic
traces collected from the edge of a research institute connected
to the Internet via a full-duplex 1 Gigabit Ethernet link. Inthis
paper, we present the results obtained by using a 12 hour long
trace. In addition, results from other sites where tested and
found to give similar results (but are not reported for brevity).
We only consider TCP traffic, as it constitutes the majority
of the traffic volume for our trace. Figures 4 and 5 show
the link utilization and packet rate respectively of TCP traffic
measured using a 120 s time interval. The actual maximum
link utilization is at around 360 Mbit/s while the maximum
packet rate is above 56 Kpkts/s.

Figure 6 plots the (empirical) complementary cumulative
distribution function (CCDF) of the number of packets per
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Fig. 4. TCP bandwidth of our reference trace measured using a 120 s time
interval.
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Fig. 5. TCP packet rate of our reference trace measured using a120 s time
interval.

flow for our trace. Note that a “linear” relationship in such log-
log scaled plot indicates consistency of the tail with a Pareto
distribution. The plot reveals insight about how efficiently
sampling up to theJ th (with J small) can serve in terms
of reducing the volume of data that a flow classification
application has to deal with. Further, takingJ equal to 10
results in less than 4% of the flows not being sampled
completely.

Figure 7 shows the number of active TCP flows measured
using a 120 s time interval. The spikes shown in this figure
are very likely port and/or address scans.

AR model

We now describe how we obtained the AR model for our
trace and present the related results. First, we measured the
actual value ofn1(k) for each k, for every 120 s interval
of the trace, by substituting an accurate set implementation
to the Bloom filters in our scheme. Figure 8 shows the partial
auto-correlation function (PACF) forn1(k) andn3(k) together
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Fig. 7. Number of active TCP flows of our reference trace measured using
a 120 s time interval.

with the 95% confidence intervals. As can be seen, there
appear to be significant lags at several values forn1(k).
However, once the outliers are removed from the data the
PACF resembles that ofn3(k) which shows significant lags
only at 1, 2 and 3 implying that an AR model of order 3,
AR(3), may be applicable to this time-series. Further, it was
found that an AR(3) model appears applicable in all cases
(this is not surprising considering the high degree of cross-
correlation between thenj). The forecast and actual values of
n1(k) andn3(k) are shown in Figure 9 and 10 respectively.

Table I, summarize the parameter estimates and statistics
for the AR(3) models trained for 10 Bloom filters. In order
to estimate the parameters, ordinary least squares was used
and the dataset was split randomly into a training set (2/3
of the data) and a test set (1/3), uniformly distributed across
the data. As can be seen there is good agreement between
the Mean Squared Errors (MSE) obtained in the training and
test sets showing that the models have generalized well. The
Mean Absolute Percentage Errors (MAPE) are given for easy
interpretation of the results, and these show that on average
the forecast is within 4% of the actual.
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ni θ1 θ2 θ3 Training set PMSE Test set PMSE
n1 0.65 0.19 0.16 10014 16618
n2 1.07 -0.17 0.10 3459 4907
n3 0.79 0.04 0.16 1600 2075
n4 0.85 -0.07 0.22 1682 1607
n5 0.79 -0.01 0.23 1601 1759
n6 0.75 0.01 0.24 1682 1553
n7 0.81 -0.11 0.30 1442 1580
n8 0.88 -0.10 0.22 1398 1615
n9 0.80 -0.13 0.33 1405 1418
n10 0.75 -0.04 0.29 1230 1374

TABLE I
ESTIMATED AR MODEL PARAMETERS ANDPREDICTION MEAN SQUARED

ERRORS.

Simulations

To evaluate our method we have run several experiments us-
ing a software implementation of the packet sampling scheme.
By having a software implementation, we are able to add the
capability of detecting false positives using hash sets to mirror
the set represented by each Bloom filter.

Choosingk independent hash functions for each Bloom
filter constitutes a practical problem. In our implementation,
we used two different hashing techniques:(i) universal hash-
ing [8], and(ii) enhanced double hashing [10]. Theoretically,
universal hashing has the property of behaving as a random
function of the input set which ensures uniformity of the output
values. The reason for choosing enhanced double hashing over
universal hashing is that it only requires the evaluation oftwo
hash functions to generatek independent indices, making the
execution faster [16]. Our implementation of enhanced double
hashing uses Jenkins’ hash function [17] with two randomly
chosen initial values to hash a flow identifier intok indices. We
found that the results (omitted for brevity) given by using the
universal hashing technique are very similar to those obtained
with enhanced double hashing, in accordance with [16].

Figure 11 shows the number of false positives, theoretical
according to Equation 5 (shown as “expected fp”) and mea-
sured for two experiments. For these experiments we used
J = 10, W = 120 andM = 512KB. Shown as “ratio sol.”
is the the simulation in which we have used the memory
allocation obtained by computing the Equations 7 and 8 for
every interval, using the actualnj previously measured to
derive the AR model. This represents the best possible case,
i.e., when the forecast of AR model is exactly the actual value.
Finally, “ratio ad sol.” refers to the simulation of our method
using the adaptive memory allocation algorithm. In this case,
the estimate ofnj is based on therecordednj for the past three
intervals. As can be seen there is good agreement between the
expected number of false positives in all cases. The following
figures refer to the “ratio ad sol.” experiment.

Unfortunately, the estimate ofnj is not always correct.
Figure 12 shows the estimate ofnj over time compared
to the recorded value at the end of every interval. These
estimation errors yield to sub-optimal memory allocationsas
it is the case for the traffic spike at about 11:30 in Figure 11.
There the measured number of false positives is above the
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m1 m2 m3 m4 m5

1 0.82 0.72 0.64 0.60
m6 m7 m8 m9 m10

0.59 0.56 0.53 0.48 0.43

TABLE II
AVERAGE RATIO OFmj/m1 .

expected one by about 60%. However, when we consider the
individual number of false positives per Bloom filter, as shown
in Figure 13, it appears that only the first few filters of the
chain experience a steep increase of false positives. In contrast,
the other filters (which compensate the false positives in early
filters by storing more elements), record an evolution of false
positives which is in good agreement with the theoretical
results.

Figure 14a shows the percentage of sampled packets for the
“ratio ad sol.” experiment compared to the ideal situation of
not having false positives. The analogous plot of the percent-
age of sampled bytes is represented in Figure 14b. It can be
seen that, for both metrics the sampling scheme performance
is close to the ideal case, despite the high numbers of false
positives shown before. In both figures the “ratio sol.” curve
is actually below the ideal case. This is because for a small
number of flows fewer packets than desired are sampled.
Finally, note that this scheme achieves reduction in total traffic
in the order of a factor of five in packets, and a factor of ten
in bytes.

Table II reports the average ratio ofmj/m1. These deter-
mine the memory allocation and reflect the characteristic of
Internet traffic in which the majority of the flows are mice but
a small number of large flows account for the quasi majority
of the packets.

We now illustrate how the parameterM changes the number
of sampled packets and bytes, how many false positives we
get and how many flows are affected by false positives and
how many packets and bytes which were supposed to be
sampled don’t get sampled. For the following experiments we
only test for 1 hour of the trace, the last hour. Figures 15a
and 15b represent the percentage of sampled packets and bytes
respectively forM=512KB and multiples. Figure 16 reports
the total number of false positives for every interval.

Table III lists the number of flows that are affected by
false positives and the amount of packets and bytes that are
not sampled. Note that, for our trace, 512KB of memory
already provide a good performance, but doubling the memory
improves it of an order of magnitude. However, past 1024KB,
the benefit given by using more memory quickly decreases.

Testing with a flow classification application

Finally we tested our method with one flow classification
application and looked at the results obtained by running with
and without sampling. We chose to use the layer-7 traffic
classifier (L7) described in [18]. This application uses a pattern
matching based technique to classify each flow according to
the generating application. L7 uses the information carried in
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the payload of the few initial packets of each flow. First we run
L7 without sampling on the last hour of our trace. It recognizes
a total of 2,642,841 flows. Then we feed into L7 the packets
sampled by using our method withM=512KB, J=10 and
W=120. In this case the total number of flows is 2,636,549.
The difference is 6,292 (0.0024%) flows. These are essentially
single or two packets flows that are not sampled because of
errors due to the false positives in some of the filters. Another
6,021 (0.0023%) flows are instead present among the sampled
ones but are not classified by L7, which means that not all their
packets could have been sampled, still due to false positives in
some of the filters. In total the difference is 12,313 (0.0047%)
flows, which causes a negligible loss in the accuracy of L7.
However, using this sampling method, L7 experiences a traffic
volume which is reduced of an order of magnitude.

Traffic spikes

Interestingly, the scheme is robust to spikes in the number
of active flows caused by attacks or scans (both IP or port
scans, as they are regarded as an individual flow each). In fact,
during these kinds of attacks there are many more flows having
a small packet count, typically 1 to 3 packets. Potentially,this
is going to create a high number of false positives in the first
three Bloom filters, however, it is likely that these flows will
end up in later Bloom filters, assumingJ is above 6. Therefore,
the scheme is sampling all the first packets of each attack or
scan flow with high probability.

VI. RELATED WORK

Bloom filters have found application in numerous areas
of Computer Science, most notably in database applications,
and more recently in networking. In [9], Broder et al. have
surveyed the network applications of Bloom filters.

Related to our work is the traffic accounting scheme de-
scribed by Estan and Varghese [12]. They proposed a novel
byte-counting algorithm based upon a Multistage filter, a
structure derived from Counting Bloom filter [11], which
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M Affected flows Unsampled packets Unsampled bytes
512KB 5529 (0.0021%) 517173 (0.0221%) 199167936 (0.0323%)
1024KB 4863 (0.0018%) 58007 (0.0024%) 22907748 (0.0037%)
1576KB 4274 (0.0016%) 15830 (0.0006%) 6535918 (0.0010%)
2048KB 4237 (0.0016%) 6086 (0.0003%) 2475934 (0.0004%)

TABLE III
FLOWS, PACKETS AND BYTES THAT ARE AFFECTED BECAUSE OF FALSE POSITIVES.



focuses upon the identification and monitoring of a small
number of elephant flows and leads to an implementation
optimized for that specific metric. Our work, focusing upon
packet-counting, results in a different physical structure.

Kumar et al. [19] introduced a novel data structure, Space-
Code Bloom filter (SPBF), which enables approximate per-
flow traffic measurements by using multiple Bloom filter
with increasing resolutions and extends the Multistage filter
approach which addresses the problem of monitoring just a
few large flows. In contrast with that work, we use a chain of
J standard Bloom filters whereJ is expected to be a small
number (e.g., in the range of 5 to 10). With such few filters it
is not efficient to use a multi-resolution SPBF, which is most
suited to account for flow sizes.

In [20], the authors propose the Time Machine, a system
that uses dynamic packet filtering and buffering to enable bulk
recording of large traffic streams. This system implements a
filtering scheme that realizes a flowcutoff: for every flow, it
only keeps up to the firstX bytes. Such mechanism is very
similar to our sampling scheme, although we use packet count
as the unit for flow cutoff. However, our approach is based on
probabilistic data structures which can be dimensioned to use
just a fraction of the memory occupied by the deterministic
data structure implemented in Time Machine.

Finally, an FPGA-based accelerator for Network Intrusion
Prevention was presented in [21]. Their approach uses large
state tables (maintained in hardware) to define large-volume
subsets of traffic which are not interesting for the intrusion
prevention system. In our scheme instead, we focus on ex-
tracting some packets for each active flow.

VII. C ONCLUSION

We have presented both a method and practical implemen-
tation of a flow-sampling scheme suitable for the inline, real-
time, classification of high-speed networks. We demonstrated
that our approach, based upon the partial sampling of each
flow, permits sufficient reduction in total traffic (e.g., a factor
of five in packets, a factor of ten in bytes) to permit practical
implementations at one Gigabit/s, and, using limited hardware
assistance, ten Gigabit/s.

Future Work

The next stage of development for this project is the im-
plementation in hardware and online testing of the system. In
addition, the value ofW can be adjusted and the advantage of
using a bank of bloom filters which overlap the time windows
can be investigated. The advantage of this approach would be
to determine (to a limited degree) flows which begin in one
window and continue into the next.
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