CS 240 F17
Lab 1: Virtualization, sockets, RPCs

Hassan Alsibyani, Humam AlWassel, Guolei Sun, Marco Canini

Part 1

The first part is designed to get you acquainted with Amazon Web Services (AWS), Vagrant,
and Docker tools if you haven't used them before. This is not meant to be an exhaustive guide
to any of the tools and might not be completely self-contained.

For how to install Vagrant and Docker, please refer to the instructions on their respective
websites:

https://www.vagrantup.com/

https://www.docker.com/

1.1 Create an AWS account

This one is straight forward. Go to www.awseducate.com/Application and create a student
account. Make it as soon as possible if you haven’t already since it requires to go through
approval by AWS.

1.2 Run an instance on AWS

The VM service offering on AWS is called EC2 (Elastic Compute Cloud). You can see
information regarding service pricing at: https://aws.amazon.com/ec2/pricing/.

For this lab, we suggest that you try to make use of Free Tier service by using the t2.micro
instance type.

While you can use CLI tools or APIs to launch an instance, the browser GUI is gentler and might
give you a better idea on the available options.

Login on AWS at https://console.aws.amazon.com. Go to the EC2 Dashboard and press the big
blue Launch Instance button

https://console.aws.amazon.com/
https://aws.amazon.com/ec2/pricing/
https://www.vagrantup.com/
https://www.docker.com/
http://www.awseducate.com/Application

- g 5 .) -
[T Services v Resource Groups v * [\ Hassan Alsibyani v Ireland v Suppor

EC2 Dashboard - Resources ¢ Account Attributes
Events 1 i) :
You are using the following Amazon EC2 resources in the EU West (Ireland) Supported Platforms
Tags region: VEC
Reports - 3
i 0 Run!mng Instances 0 Elastic IPs Default VPG
0 Dedicated Hosts 0 Snapshots pc-32149557
& INSTANCE 0 Volumes 0 Load Balancers
" ; Resource ID length
Instanices 0 Key Pairs 1 Security Groups G 3
Spot Requests 0 Placement Groups
Reserved Instances Additional
Scheduled Instances . i
] Just need a simple virtual private server? Get everything you need to x | Information
Dedicated Hosts jumpstart your project - compute, storage, and networking — for a low, Getting Started Guide
= IMAGES predictable price. Try Amazon Lightsail for free. DecTaH Lo
AMIs All EC2 Resources
Bundie Tasks Create Instance Forums
g == To start using Amazon EC2 you will want to launch a virtual server, known asan "Ticind
Amazon EC2 instance. Contact Us
Volumes
Snapshots Launch Instance AWS Marketplace
= .: I & Mote: Your instances will launch in the EU West (Ireland) region Find free software trial
Security Groups ‘ products in the AWS
Elastic [Ps Service Health C' Scheduled Events C' Marketplace from the EC2
. Launch Wizard. Or try these
Placement Groups Service Status: EU West (Ireland): popular AMIs:
Key P; 2 No events
ey Rl @ EU _WESI (.Ireland),) Barracuda NextGen Firewall
Network Interfaces This service is operating normally F-Series - PAYG
Z] LOAD BALANCING Availability Zone Status: Provided by Barracuda
Load Balancers o eu-west1a: Networks, Inc.
Target Groups Availability zone is operating Rating ol
M nomally Starting from $0.60/hr or
=] AUTO SCALING from $4,599/yr (12%
Launch Configurations eu-west-1b: savings) for software + AWS
Auto Sealing Groups Availability zone is operating usage fees
normally View all Network
= sl s eu-west-1¢: Infrastructure
Awvailability zone is operating
Run Command i %
& ey VM-Series Next-Generation

From there you will see many options for different types of OSes, computation power, and
network availability. You can choose the cheaper t2.micro instances since they are Free Tier
eligible. As for the OS, Ubuntu 16.04 is a good choice.

By the end of the setup wizard, you will be asked to create a key pair. This key is essential to
SSH into your instance. Make sure you download the private key.

If you are not familiar with key-based authentication for SSH, please consult this guide:
https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authenticatio
n-on-a-linux-server. Please note that AWS generates the key for you.

https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-linux-server
https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-linux-server

Select an existing key pair or create a new key pair X

A key pair consists of a public key that AWS stores, and a private key file that you store. Together, they
allow you to connect to your instance securely. For Windows AMIs, the private key file is required to
obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

| Create a new key pair v]
Key pair name

Download Key Pair

itin a secure and accessible location. You will not be able to download the file

Q You have to download the private key file (*.pem file) before you can continue. Store
again after it's created.

Cancel Launch. Instances

Congrats, your instance is now getting set up and will launch soon. It should take just a few
minutes to become ready. Go to your instances dashboard and you should see it. Right-click the
instance and you will see a connect option, follow the instruction to SSH to your instance (hint:
you will need the private key you just downloaded).

1.3 Provision a VM on your laptop with Vagrant

Vagrant is a great tool to provision VMs or containers to make them easier to share and
reproduce especially in production environments. Their website provides clear explanations on
what Vagrant is and how you can get started: https://www.vagrantup.com/intro/index.html. Make
sure you install Vagrant before proceeding.

https://www.vagrantup.com/intro/index.html

In this example, we are going to use VirtualBox as our hypervisor. We are going to use Ubuntu
16.04 as our guest OS. We will run an nginx web server inside the VM. We will need to
configure Vagrant to forward TCP port 80 so we can access it on our host machine.

In order to use Vagrant, your settings/provisions needs to be defined in a Vagrantfile. Go
somewhere in your working directory and run:

mkdir nginx_vagrant_example

cd nginx_vagrant_example

touch Vagrantfile

Now copy this in your Vagrantfile:

Vagrant.configure(2) do |config]|

config.vm.box = "ubuntu/xenial64"

config.vm.provision "shell", path: "reqgs.sh"

config.vm.network "forwarded_port", guest: 80, host: 8080, id: "nginx"
end

In general, it is important not to be a cargo cult developer and try to understand what is
happening before we run it. This will use Ubuntu as the VM box, will provision the image by
running regs.sh and will forward port 80 from the running instance to 8080 on the localhost (this
means that all the traffic sent to localhost, which is your machine, on port 8080 is automatically
forwarded to the VM on its port 80). reqs.sh will be a simple file that installs and runs nginx.
Create regs.sh and paste the following in it:

apt-get -y update
apt-get -y install nginx
service nginx start

Now run vagrant up --provider virtualbox and Vagrant will install the Ubuntu image, launch
it, and provision it. This will take some time. After it launches, you can go to
http://localhost:8080/ or curl localhost:8080 and you should see nginx running.

To get a shell inside the VM, you can run vagrant ssh.

When you are done, you can vagrant halt to stop the instance. To restart it, you can simply run
vagrant up again (no need to provision it). If you run vagrant destroy, this command destroys
the instance (and removes all of its state).

1.4 Create and run a container with Docker

Docker allows you to have some isolation with much lower overhead than a VM. Install and run
the Docker daemon. Let us make another directory and create the Dockerfile

mkdir nginx_docker_example

http://localhost:8080/

cd nginx_docker_example
touch Dockerfile

Now paste this into the Dockerfile

FROM ubuntu:16.04
RUN apt-get update && apt-get install -y nginx && service nginx start
EXPOSE 80

Now we will have to build our image by running docker build -t="nginx_example" . (note the
“.” that indicates the current directory as the path of the Dockerfile) and now we can launch it by
docker run --name nginx-docker -p 8080:80 nginx_example this does something similar to
the Vagrant example above and you can go to localhost:8080 again and see the server
running.

In fact, this was the long way of running an nginx server on Docker. Instead of creating an
Ubuntu image and downloading nginx on top of it, you can directly use an pre-made nginx

image and run it just by using

docker pull nginx
docker run --name nginx-dockerimg -p 8080:80 nginx

Docker provides you with many images and you can imagine how this can be useful when
working on large projects on different machines that may contain different tools and
environments.

1.5 Benchmark performance of nginx in a VM vs. a container

Extra task

This is an extra task. We recommend that you attempt this after you have completed all the
other parts of this lab.

Do you wonder how much faster does ngnix run inside a container instead of when running in
a VM?
You can try to find out!

To do so, try to reproduce the benchmarks from this blog post on the official ngnix website:
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/.
Please note that you will need to make some set up of your environment and install the wrk
performance benchmarking tool in your host machine.

The setup details are described on this blog post:
https://www.nginx.com/blog/nginx-plus-sizing-guide-how-we-tested/.

https://www.nginx.com/blog/nginx-plus-sizing-guide-how-we-tested/
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/

Part 2

Sockets are a representation of endpoints in networks that allows two different processes to
communicate with each others, this could be in the same machine or in different machines. The
use of sockets is common within many application, for example: HTTP, FTP, and IRC.

This second part is designed to let you practice the basics of socket programming. Our example
is basic: a client will send a string (the request) to the server, and the server replies with a string
(the response) that echoes the request. We provide a server program (server.go) that creates a
TCP socket and listen on a port. When it receives a new connection, it spawns a go routine to
handle the request. You will run this program in various environments and test it with the the nc
tool. You will then write your own client program using socket programming in Go.

If you need some background on sockets or network programming in Go, please see:
https://appliedgo.net/networking/.

2.1 Run a simple echo socket server program

Before this step, make sure you have a running installation of Go on your machine.

Place the provided program (sever.go) into your work directory and run it as:

g0 run server.go

You can see an output as “Listening on localhost:3333”, which means that the program is
running successfully and awaiting connections on port 3333. Let’s test it.

2.2 Test the server

In this step, you need to test that the provided server program functions as expected.
On the same host as the server, run the following:

echo -n "test out the server" | nc localhost 3333

If all goes well, you should see this message:

Message received: test out the server

The server replied with our request, as expected.

The above works well because both the client (nc) and the server (server.go) are running on
the same machine. What happens when we deploy our server in a different execution
environment?

Let’s try to run the program inside a VM on AWS as well as inside a Docker container.

Now, create and launch an instance like we introduced in Part 1.
Once the instance is up, setup Go inside it. If you are using a Debian-based machine (like
Ubuntu), type the following commands to setup Go.

https://appliedgo.net/networking/

sudo apt-get update

sudo apt-get install golang

Then run the server program and try to run the client on your machine/laptop.
Well, it seems that the server is not working anymore. Can you tell what is wrong?

There are two issues that we need to solve.

First, when you run the server, have you notice that it outputs “Listening on localhost:3333".
This means that the socket is bound to the localhost interface. This constraints the server to
only accept connections if they are local. But we instead are trying to reach the VM via its public
IP address.

To solve this issue, we need to change the interface that the socket is bound to.

Replace “localhost” with “0.0.0.0” in this line:

CONN_HOST = "localhost"

The second issue has to do with the security policy of the VM. By default, AWS applies a
security group that only enables SSH connection via port 22.
If you recall, when you created the VM instance, the security group configuration looked
something like this.

1.Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 7. Review

Step 6: Configure Security Group
A security group is a set of firewall rules that control the traffic for your instance. On this page, you can add rules to allow specific traffic to reach your instance. For example, if you want to
set up a web server and allow Internet traffic to reach your instance, add rules that allow unrestricted access to the HTTP and HTTPS ports. You can create a new security group or select
from an existing one below. Learn more about Amazon EC2 security groups.

Assign a security group: ‘-« Create a new security group

Select an existing security group

Security group name: launch-wizard-2
Description: launch-wizard-2 created 2017-09-13T11:10:27.664+03:00
Type (i Protocol (i Port Range (i Source (i Description (i
SSH ¢ TCP 22 Custom ¢ 0.0.0.0/0 Q

Add Rule

The good thing is that we can change this configuration at any time. Go to the EC2 Dashboard,
select your VM and in the Description section click on the security group name. Below this is
shown as “launch-wizard-3". Note that the name can be different in your setup.

Description Status Checks Monitoring Tags

Instance ID i-00b7b809bee0187b5

Instance state running
Instance type t2.micro
Elastic IPs
Availability zone eu-west-1c

Security groups <@upch-wizard-3. view inbound rules>

Now let’'s open up port 3333. Click the Add Rule button to add another protocol as shown here.
Edit inbound rules

Type (i Protocol (i Port Range (i Source i
SSH - TCP 22 Custom &/ 0.0.0.0/0
Custom TCP | TCP 3333 Custom &/ 0.0.0.0/0
Add Rule

NOTE: Any edits made on existing rules will result in the edited rule being deleted and a new rule crea
rule to be dropped for a very brief period of time until the new rule can be created.

At this point, you should be able to successfully use the server program running on the Cloud.

2.3 Write a socket client in Go and run it

Last but not least, so far you have just made use of the nc tool to connect and send a request to
the server. It is now time to write your own socket client in Go.
Now write a socket client program. This client will:
1. connect to a specified server,
2. send a string of your choice to the server,
3. read the response from the server, and
4. output to stdout.
Basically it will do the same function for which we were using nc before.

The complete example code for client can be found on the course website. A few hints:
e Connect to the server
conn, _ := net.Dial("tcp", serverAddress + port)
e Send a string to the server
fmt.Fprintf(conn, string)
e Read the response
message, _ := bufio.NewReader(conn).ReadString('\n")

2.4 Run the client in different environments

Extra task

This is an extra task. We recommend that you attempt this after you have completed all the
other parts of this lab.

Once you have created your client program, try to run your client and the server in different
environments (AWS, Vagrant VM, Docker container). See if there are combinations where the
default network configuration requires tweaking for communication to happen (there are
certainly some!).

Part 3

This part is designed to get you acquainted with Remote Procedure Calls (RPC). You will create
a simple client and server RPC program using Go’s net/rpc package.

3.1 What is RPC?

RPC is when a machine (client) calls a procedure/function that's executed on another machine
(server) as if the client was just calling a local function that executes on its own machine. The
server and client usually live on different machines that can reach each other by talking over
network. An RPC goes through the following steps:
1. Client calls stub (local procedure call)
Client stub marshals parameters
Client OS sends message to server
Server OS passes message to server stub
Server stub unmarshals parameters
Server stub calls the server procedure
Trace back in reverse direction to return the results to the client

NoOOoR~LODN

3.2RPCin Go

You will use the net/rpc package to implement a simple client / server RPC program. net/rpc
allows us to write RPC programs very easily in the following way:
On the server side:
e Create a server
— Create a TCP server (or some other server to receive data)
— Create a listener that will handle RPCs
— Register the listener and accept inbound RPCs
e Write stub functions
func (t *T) MethodName(argType T1, replyType *T2) error
e See https://golang.org/pka/net/rpc/ for more details
On the client side :
e Create a client
client, err := rpc.DialHTTP("tcp", serverAddress + port)
e Make an RPC
var reply int

err = client.Call("Arith.Multiply", args, &reply)
e Unpack return values
—Treat as any normal variable

For more background on RPC in Go, please see: https://talks.golang.org/2013/distsys.slide and
http://blog.prevoty.com/writing-your-first-rpc-ingolang.

3.3 Create a simple client / server RPC program

We are running a time server
e Goalis to implement an RPC client that uses Cristian’s algorithm to get the server’s
clock time

. (T47T1)+(T37T2)
servertime = T, + 7

Where T, and T'; are the timestamps returned from the server, T, and T, are the
timestamps before and after the RPC call, respectively, on the client side. T, — T, is

known as the round-trip delay time (RTT) between the client request and server
response.

e Code skeleton for sever.go and client.go are available on the course website
You will need need the time and net/rpc packages. Beware the difference between
Time and Duration!

e You need to implement GetServerTime function with this signature:

// TODO
// GetServerTime implements Cristian's algorithm
// 1. Keep track of the appropriate timestamps from the

https://en.wikipedia.org/wiki/Cristian%27s_algorithm
http://blog.prevoty.com/writing-your-first-rpc-ingolang
https://talks.golang.org/2013/distsys.slide
https://golang.org/pkg/net/rpc/

// local machine. Remember to get T1 close to the
// beginning of the function!
// 2. Request T2 and T3 from the server via an RPC call

// - serviceMethod: Listener.GetServerTimestamps
// - args: Request

// - reply: ServerTimestamps

// 3. Compute the server timestamp (watch out for
// duration vs. time)

func GetServerTime(request *Request, client *rpc.Client) time.Time {3}
run your client like this
go run client.go [NetID] [ServerIP] [ServerPort]

