
Peer-to-Peer Systems and
Distributed Hash Tables

CS 240: Computing Systems and Concurrency
Lecture 12

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Selected content adapted from B. Karp, R. Morris.

1. Peer-to-Peer Systems
– Napster, Gnutella, BitTorrent, challenges

2. Distributed Hash Tables

3. The Chord Lookup Service

4. Concluding thoughts on DHTs, P2P

2

Today

• A distributed system architecture:
– No centralized control
– Nodes are roughly symmetric in function

• Large number of unreliable nodes

3

What is a Peer-to-Peer (P2P) system?

Node

Node

Node Node

Node

Internet

• High capacity for services through parallelism:
– Many disks
– Many network connections
– Many CPUs

• Absence of a centralized server or servers may mean:
– Less chance of service overload as load increases
– Easier deployment
– A single failure won’t wreck the whole system
– System as a whole is harder to attack

4

Why might P2P be a win?

• Successful adoption in some niche areas –

1. Client-to-client (legal, illegal) file sharing
– Popular data but owning organization has no money

2. Digital currency: no natural single owner (Bitcoin)

3. Voice/video telephony: user to user anyway
– Issues: Privacy and control

5

P2P adoption

1. User clicks on download link
– Gets torrent file with content hash, IP addr of tracker

2. User’s BitTorrent (BT) client talks to tracker
– Tracker tells it list of peers who have file

3. User’s BT client downloads file from one or more peers

4. User’s BT client tells tracker it has a copy now, too

5. User’s BT client serves the file to others for a while

6

Example: Classic BitTorrent

Provides huge download bandwidth,
without expensive server or network links

7

The lookup problem

N1

N2 N3

N6N5

Publisher (N4)

Client
?Internet

put(“Star Wars.mov”,
[content])

get(“Star Wars.mov”)

8

Centralized lookup (Napster)

N1

N2 N3

N6N5

Publisher (N4)

Client

SetLoc(“Star Wars.mov”,
IP address of N4)

Lookup(“Star
Wars.mov”)DB

key=“Star Wars.mov”,
value=[content]

Simple, but O(N) state and a
single point of failure

9

Flooded queries (original Gnutella)

N1

N2 N3

N6N5

Publisher (N4)

Client

Lookup(“Star
Wars.mov”)

key=“Star Wars.mov”,
value=[content]

Robust, but O(N = number of peers)
messages per lookup

10

Routed DHT queries (Chord)

N1

N2 N3

N6N5

Publisher (N4)

Client

Lookup(H(audio
data))

key=“H(audio data)”,
value=[content]

Can we make it robust, reasonable
state, reasonable number of hops?

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

4. Concluding thoughts on DHTs, P2P

11

Today

12

What is a DHT (and why)?
• Local hash table:

key = Hash(name)
put(key, value)
get(key) à value

• Service: Constant-time insertion and lookup

How can I do (roughly) this across
millions of hosts on the Internet?

Distributed Hash Table (DHT)

13

What is a DHT (and why)?
• Distributed Hash Table:
key = hash(data)
lookup(key) à IP addr (Chord lookup service)
send-RPC(IP address, put, key, data)
send-RPC(IP address, get, key) à data

• Partitioning data in truly large-scale distributed
systems
– Tuples in a global database engine
– Data blocks in a global file system
– Files in a P2P file-sharing system

• App may be distributed over many nodes
• DHT distributes data storage over many nodes

14

Cooperative storage with a DHT

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

(DHash)

(Chord)

• BitTorrent can use DHT instead of (or with) a tracker

• BT clients use DHT:
– Key = file content hash (“infohash”)
– Value = IP address of peer willing to serve file

• Can store multiple values (i.e. IP addresses) for a key

• Client does:
– get(infohash) to find other clients willing to serve
– put(infohash, my-ipaddr)to identify itself as willing

15

BitTorrent over DHT

• The DHT comprises a single giant tracker, less fragmented
than many trackers
– So peers more likely to find each other

• Maybe a classic tracker too exposed to legal & c. attacks

16

Why might DHT be a win for BitTorrent?

• API supports a wide range of applications
– DHT imposes no structure/meaning on keys

• Key/value pairs are persistent and global
– Can store keys in other DHT values
– And thus build complex data structures

17

Why the put/get DHT interface?

• Decentralized: no central authority

• Scalable: low network traffic overhead

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join

18

Why might DHT design be hard?

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service
– Basic design
– Integration with DHash DHT, performance

4. Concluding thoughts on DHTs, P2P

19

Today

• Interface: lookup(key) ® IP address

• Efficient: O(log N) messages per lookup
– N is the total number of servers

• Scalable: O(log N) state per node

• Robust: survives massive failures

• Simple to analyze

20

Chord lookup algorithm properties

• Key identifier = SHA-1(key)

• Node identifier = SHA-1(IP address)

• SHA-1 distributes both uniformly

• How does Chord partition data?
– i.e., map key IDs to node IDs

21

Chord identifiers

22

Consistent hashing [Karger ‘97]

Key is stored at its successor: node with next-higher ID

K80

N32

N90

N105 K20

K5

Circular 7-bit
ID space

Key 5

Node 105

23

Chord: Successor pointers

K80

N32

N90

N105
N10

N60

N120

24

Basic lookup

K80

N32

N90

N105
N10

N60

N120
“Where is K80?”

25

Simple lookup algorithm
Lookup(key-id)
succ ß my successor
if my-id < succ < key-id // next hop
call Lookup(key-id) on succ

else // done
return succ

• Correctness depends only on successors

• Problem: Forwarding through successor is slow

• Data structure is a linked list: O(n)

• Idea: Can we make it more like a binary search?
– Need to be able to halve distance at each step

26

Improving performance

27

“Finger table” allows log N-time lookups

N80

½¼

1/8

1/16
1/32
1/64

28

Finger i Points to Successor of n+2i

N80

½¼

1/8

1/16
1/32
1/64

K112
N120

• A binary lookup tree rooted at every node
– Threaded through other nodes' finger tables

• This is better than simply arranging the nodes
in a single tree
– Every node acts as a root

• So there's no root hotspot
• No single point of failure
• But a lot more state in total

29

Implication of finger tables

30

Lookup with finger table
Lookup(key-id)
look in local finger table for

highest n: my-id < n < key-id
if n exists

call Lookup(key-id) on node n // next hop
else

return my successor // done

31

Lookups Take O(log N) Hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

• For a million nodes, it’s 20 hops

• If each hop takes 50 milliseconds, lookups take a
second

• If each hop has 10% chance of failure, it’s a couple of
timeouts

• So in practice log(n) is better than O(n) but not great

32

An aside: Is log(n) fast or slow?

33

Joining: Linked list insert

N36

N40

N25

1. Lookup(36) K30
K38

34

Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

35

Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

36

Notify messages maintain
predecessors

N36

N40

N25

notify N36

notify N25

37

Stabilize message fixes successor

N36

N40

N25

stabilize

“My predecessor
is N36.”

✔

✘

• Predecessor pointer allows link to new node
• Update finger pointers in the background
• Correct successors produce correct lookups

38

Joining: Summary

N36

N40

N25

K30
K38

K30

39

Failures may cause incorrect lookup

N120
N113

N102

N80

N85

N80 does not know correct
successor, so incorrect lookup

N10

Lookup(K90)

40

Successor lists
• Each node stores a list of its r immediate successors

– After failure, will know first live successor
– Correct successors guarantee correct lookups

• Guarantee is with some probability

41

Choosing successor list length
• Assume one half of the nodes fail

• P(successor list all dead) = (½)r
– i.e., P(this node breaks the Chord ring)
– Depends on independent failure

• Successor list of size r = O(log N) makes this
probability 1/N: low for large N

42

Lookup with fault tolerance
Lookup(key-id)
look in local finger table and successor-list

for highest n: my-id < n < key-id
if n exists

call Lookup(key-id) on node n // next hop
if call failed,

remove n from finger table and/or
successor list

return Lookup(key-id)
else

return my successor // done

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service
– Basic design
– Integration with DHash DHT, performance

4. Concluding thoughts on DHTs, P2P

43

Today

44

The DHash DHT
• Builds key/value storage on Chord

• Replicates blocks for availability
– Stores k replicas at the k successors after the

block on the Chord ring

• Caches blocks for load balancing
– Client sends copy of block to each of the servers it

contacted along the lookup path

• Authenticates block contents

45

DHash data authentication
• Two types of DHash blocks:

– Content-hash: key = SHA-1(data)
– Public-key: key is a cryptographic public key, data are

signed by corresponding private key

• Chord File System example:

Chord

CFS Client CFS Server CFS Server

DHash

Chord

FS

DHash DHash

Chord

Figure 1: CFS software structure. Vertical links are local APIs;
horizontal links are RPC APIs.

This is more space-efficient, for large files, than whole-file caching.
CFS relies on caching only for files small enough that distributing
blocks is not effective. Evaluating the performance impact of block
storage granularity is one of the purposes of this paper.
OceanStore [13] aims to build a global persistent storage util-

ity. It provides data privacy, allows client updates, and guarantees
durable storage. However, these features come at a price: com-
plexity. For example, OceanStore uses a Byzantine agreement pro-
tocol for conflict resolution, and a complex protocol based on Plax-
ton trees [24] to implement the location service [35]. OceanStore
assumes that the core system will be maintained by commercial
providers.
Ohaha [22] uses consistent hashing to map files and keyword

queries to servers, and a Freenet-like routing algorithm to locate
files. As a result, it shares some of the same weaknesses as Freenet.

2.5 Web Caches
Content distribution networks (CDNs), such as Akamai [1],

handle high demand for data by distributing replicas on multiple
servers. CDNs are typically managed by a central entity, while CFS
is built from resources shared and owned by a cooperative group of
users.
There are several proposed scalable cooperative Web caches [3,

8, 10, 15]. To locate data, these systems either multicast queries or
require that some or all servers know about all other servers. As
a result, none of the proposed methods is both highly scalable and
robust. In addition, load balance is hard to achieve as the content
of each cache depends heavily on the query pattern.
Cache Resolver [30], like CFS, uses consistent hashing to evenly

map stored data among the servers [12, 14]. However, Cache Re-
solver assumes that clients know the entire set of servers; main-
taining an up-to-date server list is likely to be difficult in a large
peer-to-peer system where servers join and depart at unpredictable
times.

3. Design Overview
CFS provides distributed read-only file storage. It is structured as

a collection of servers that provide block-level storage. Publishers
(producers of data) and clients (consumers of data) layer file system
semantics on top of this block store much as an ordinary file system
is layered on top of a disk. Many unrelated publishers may store
separate file systems on a single CFS system; the CFS design is
intended to support the possibility of a single world-wide system
consisting of millions of servers.

3.1 System Structure
Figure 1 illustrates the structure of the CFS software. Each CFS

client contains three software layers: a file system client, a DHash

block
directory

...
H(D)

...

H(F)

data block

data block
D F

H(B2)

H(B1)block B1

B2

root−blockpublic key

...

signature

inode

Figure 2: A simple CFS file system structure example. The
root-block is identified by a public key and signed by the corre-
sponding private key. The other blocks are identified by cryp-
tographic hashes of their contents.

storage layer, and a Chord lookup layer. The client file system uses
the DHash layer to retrieve blocks. The client DHash layer uses the
client Chord layer to locate the servers that hold desired blocks.
Each CFS server has two software layers: a DHash storage layer

and a Chord layer. The server DHash layer is responsible for stor-
ing keyed blocks, maintaining proper levels of replication as servers
come and go, and caching popular blocks. The server DHash and
Chord layers interact in order to integrate looking up a block iden-
tifier with checking for cached copies of the block. CFS servers
are oblivious to file system semantics: they simply provide a dis-
tributed block store.
CFS clients interpret DHash blocks in a file system format

adopted from SFSRO [9]; the format is similar to that of the UNIX
V7 file system, but uses DHash blocks and block identifiers in place
of disk blocks and disk addresses. As shown in Figure 2, each block
is either a piece of a file or a piece of file system meta-data, such as
a directory. The maximum size of any block is on the order of tens
of kilobytes. A parent block contains the identifiers of its children.
The publisher inserts the file system’s blocks into the CFS sys-

tem, using a hash of each block’s content (a content-hash) as its
identifier. Then the publisher signs the root block with his or her
private key, and inserts the root block into CFS using the corre-
sponding public key as the root block’s identifier. Clients name a
file system using the public key; they can check the integrity of
the root block using that key, and the integrity of blocks lower in
the tree with the content-hash identifiers that refer to those blocks.
This approach guarantees that clients see an authentic and inter-
nally consistent view of each file system, though under some cir-
cumstances a client may see an old version of a recently updated
file system.
A CFS file system is read-only as far as clients are concerned.

However, a file system may be updated by its publisher. This in-
volves updating the file system’s root block in place, to make it
point to the new data. CFS authenticates updates to root blocks by
checking that the new block is signed by the same key as the old
block. A timestamp prevents replays of old updates. CFS allows
file systems to be updated without changing the root block’s iden-
tifier so that external references to data need not be changed when
the data is updated.
CFS stores data for an agreed-upon finite interval. Publishers

that want indefinite storage periods can periodically ask CFS for an
extension; otherwise, a CFS server may discard data whose guar-
anteed period has expired. CFS has no explicit delete operation:
instead, a publisher can simply stop asking for extensions. In this
area, as in its replication and caching policies, CFS relies on the
assumption that large amounts of spare disk space are available.

3.2 CFS Properties
CFS provides consistency and integrity of file systems by adopt-

ing the SFSRO file system format. CFS extends SFSRO by provid-

• Replicas are easy to find if successor fails
• Hashed node IDs ensure independent failure

46

DHash replicates blocks at r successors

N40

N10
N5

N20

N110

N99

N80
N60

N50

Block 17

N68

47

Experimental overview
• Quick lookup in large systems

• Low variation in lookup costs

• Robust despite massive failure

Goal: Experimentally confirm
theoretical results

48

Chord lookup cost is O(log N)

Number of Nodes

Av
er

ag
e

M
es

sa
ge

s
pe

r L
oo

ku
p

Constant is 1/2

49

Failure experiment setup
• Start 1,000 Chord servers

– Each server’s successor list has 20 entries
– Wait until they stabilize

• Insert 1,000 key/value pairs
– Five replicas of each

• Stop X% of the servers, immediately make 1,000 lookups

50

Massive failures have little impact

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)

Failed Nodes (Percent)

(1/2)6 is 1.6%

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service
– Basic design
– Integration with DHash DHT, performance

4. Concluding thoughts on DHT, P2P

51

Today

• Original DHTs (CAN, Chord, Kademlia, Pastry, Tapestry)
proposed in 2001-02

• Following 5-6 years saw proliferation of DHT-based
applications:
– Filesystems (e.g., CFS, Ivy, OceanStore, Pond, PAST)
– Naming systems (e.g., SFR, Beehive)
– DB query processing [PIER, Wisc]
– Content distribution systems (e.g., Coral)
– distributed databases (e.g., PIER)

52

DHTs: Impact

Why don’t all services use P2P?
1. High latency and limited bandwidth

between peers (cf. between server cluster in
datacenter)

2. User computers are less reliable than
managed servers

3. Lack of trust in peers’ correct behavior
– Securing DHT routing hard, unsolved in practice

53

• Seem promising for finding data in large P2P systems
• Decentralization seems good for load, fault tolerance

• But: the security problems are difficult
• But: churn is a problem, particularly if log(n) is big

• So DHTs have not had the impact that many hoped for

54

DHTs in retrospective

• Consistent hashing
– Elegant way to divide a workload across machines
– Very useful in clusters: actively used today in Amazon

Dynamo, Apache Cassandra and other systems

• Replication for high availability, efficient recovery after
node failure

• Incremental scalability: “add nodes, capacity increases”

• Self-management: minimal configuration

• Unique trait: no single server to shut down/monitor
55

What DHTs got right

Wednesday topic:
Eventual Consistency

Pre-reading: Bayou paper (on website)

56

