
Eventual Consistency: Bayou

CS 240: Computing Systems and Concurrency
Lecture 13

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Selected content adapted from B. Karp, R. Morris.

• NFS and 2PC all had single points of failure
– Not available under failures

• Distributed consensus algorithms allow view-change
to elect primary
– Strong consistency model
– Strong reachability requirements

2

Availability versus consistency

If the network fails (common case), can we
provide any consistency when we replicate?

• Eventual consistency: If no new updates to the
object, eventually all accesses will return the last
updated value

• Common: git, iPhone sync, Dropbox, Amazon Dynamo

• Why do people like eventual consistency?
– Fast read/write of local copy (no primary, no Paxos)
– Disconnected operation

3

Eventual consistency

Issue: Conflicting writes to different copies
How to reconcile them when discovered?

• Meeting room calendar application as case study in
ordering and conflicts in a distributed system with poor
connectivity

• Each calendar entry = room, time, set of participants

• Want everyone to see the same set of entries, eventually
– Else users may double-book room

• or avoid using an empty room

4

Bayou: A Weakly Connected
Replicated Storage System

5BYTE Magazine (1991)

• Want my calendar on a disconnected mobile phone
– i.e., each user wants database replicated on her

mobile device
– No master copy

• Phone has only intermittent connectivity
– Mobile data expensive when roaming, Wi-Fi not

everywhere, all the time
– Bluetooth useful for direct contact with other

calendar users’ devices, but very short range

6

What’s wrong with a central server?

• Suppose two users are in Bluetooth range

• Each sends entire calendar database to other

• Possibly expend lots of network bandwidth

• What if conflict, i.e., two concurrent meetings?
– iPhone sync keeps both meetings

– Want to do better: automatic conflict resolution

7

Swap complete databases?

• Can’t just view the calendar database as abstract bits:
– Too little information to resolve conflicts:

1. “Both files have changed” can falsely conclude
entire databases conflict

2. “Distinct record in each database changed” can
falsely conclude no conflict

8

Automatic conflict resolution

• Want intelligence that knows how to resolve
conflicts

– More like users’ updates: read database, think,
change request to eliminate conflict

– Must ensure all nodes resolve conflicts in the
same way to keep replicas consistent

9

Application-specific conflict resolution

• Suppose calendar update takes form:
– “10 AM meeting, Room=305, CS-240 staff”
– How would this handle conflicts?

• Better: write is an update function for the app
– “1-hour meeting at 10 AM if room is free, else

11 AM, Room=305, CS-240 staff”

10

What’s in a write?

Want all nodes to execute same
instructions in same order, eventually

• Node A asks for meeting M1 at 10 AM, else 11 AM
• Node B asks for meeting M2 at 10 AM, else 11 AM

• X syncs with A, then B
• Y syncs with B, then A

• X will put meeting M1 at 10:00
• Y will put meeting M1 at 11:00

11

Problem

Can’t just apply update functions to DB replicas

• Maintain an ordered list of updates at each node

– Make sure every node holds same updates
• And applies updates in the same order

– Make sure updates are a deterministic function of
database contents

• If we obey the above, “sync” is a simple merge of two
ordered lists

12

Insight: Total ordering of updates

Write log

• Timestamp: 〈local timestamp T, originating node ID〉

• Ordering updates a and b:
– a < b if a.T < b.T, or (a.T = b.T and a.ID < b.ID)

13

Agreeing on the update order

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Pre-sync database state:
– A has M1 at 10 AM
– B has M2 at 10 AM

• What's the correct eventual outcome?
– The result of executing update functions in

timestamp order: M1 at 10 AM, M2 at 11 AM

14

Write log example

Timestamp

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Now A and B sync with each other. Then:
– Each sorts new entries into its own log

• Ordering by timestamp
– Both now know the full set of updates

• A can just run B’s update function
• But B has already run B’s operation, too soon!

15

Write log example: Sync problem

• B needs to “roll back” the DB, and re-run both ops
in the correct order

• So, in the user interface, displayed meeting room
calendar entries are “tentative” at first
– B’s user saw M2 at 10 AM, then it moved to 11 AM

16

Solution: Roll back and replay

Big point: The log at each node holds the
truth; the DB is just an optimization

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Maybe B asked first by the wall clock
– But because of clock skew, A’s meeting has lower

timestamp, so gets priority

• No, not “externally consistent”

17

Is update order consistent with wall clock?

• Suppose another example:

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈700, B〉: Delete update 〈701, A〉

– B’s clock was slow

• Now delete will be ordered before add

18

Does update order respect causality?

• Want event timestamps so that if a node observes E1
then generates E2, then TS(E1) < TS(E2)

• Tmax = highest TS seen from any node (including self)
• T = max(Tmax+1, wall-clock time), to generate TS

• Recall properties:
– E1 then E2 on same node è TS(E1) < TS(E2)
– But TS(E1) < TS(E2) does not imply that

E1 necessarily came before E2

19

Lamport logical clocks respect causality

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈700, B〉: Delete update 〈701, A〉
• 〈702, B〉: Delete update 〈701, A〉

• Now when B sees 〈701, A〉 it sets Tmax ß 701
– So it will then generate a delete update with a

later timestamp

20

Lamport clocks solve causality problem

• Ordering by timestamp arbitrarily constrains order
– Never know whether some write from the past

may yet reach your node…

• So all entries in log must be tentative forever

• And you must store entire log forever

21

Timestamps for write ordering: Limitations

Problem: How can we allow committing a tentative
entry, so we can trim logs and have meetings

• Strawman proposal: Update 〈10, A〉 is stable if all
nodes have seen all updates with TS ≤ 10

• Have sync always send in log order
• If you have seen updates with TS > 10 from every

node then you’ll never again see one < 〈10, A〉
– So 〈10, A〉 is stable

• Why doesn’t Bayou do this?
– A server that remains disconnected could prevent

writes from stabilizing
• So many writes may be rolled back on re-connect

22

Fully decentralized commit

• For log entry X to be committed, all servers must agree:

1. On the total order of all previous committed writes

2. That X is next in the total order

3. That all uncommitted entries are “after” X

23

Criteria for committing writes

• Bayou uses a primary commit scheme
– One designated node (the primary) commits updates

• Primary marks each write it receives with a permanent
CSN (commit sequence number)
– That write is committed
– Complete timestamp = 〈 CSN, local TS, node-id〉

24

How Bayou commits writes

Advantage: Can pick a primary server
close to locus of update activity

• Nodes exchange CSNs when they sync with each other

• CSNs define a total order for committed writes
– All nodes eventually agree on the total order
– Uncommitted writes come after all committed writes

25

How Bayou commits writes (2)

• Still not safe to show users that an appointment
request has committed!

• Entire log up to newly committed write must be
committed
– Else there might be earlier committed write a node

doesn’t know about!
• And upon learning about it, would have to re-run

conflict resolution

• Bayou propagates writes between nodes to enforce this
invariant, i.e. Bayou propagates writes in CSN order

26

Showing users that writes are committed

• Suppose a node has seen every CSN up to a write, as
guaranteed by propagation protocol

– Can then show user the write has committed

• Slow/disconnected node cannot prevent commits!

– Primary replica allocates CSNs; global order of
writes may not reflect real-time write times

27

Committed vs. tentative writes

• What about tentative writes, though—how do they
behave, as seen by users?

• Two nodes may disagree on meaning of tentative
(uncommitted) writes
– Even if those two nodes have synced with each other!

– Only CSNs from primary replica can resolve these
disagreements permanently

28

Tentative writes

29

Example: Disagreement on tentative writes
Time

Logs

A B C

〈 2, A〉 〈 1, B〉 〈 0, C〉

W 〈 0, C〉
W 〈 1, B〉

W 〈 2, A〉

sync

30

Example: Disagreement on tentative writes
Time

Logs

A B C

〈 2, A〉
〈 1, B〉 〈 0, C〉

W 〈 0, C〉
W 〈 1, B〉

W 〈 2, A〉

sync

〈 1, B〉
〈 2, A〉

sync

31

Example: Disagreement on tentative writes
Time

Logs

A B C

〈 2, A〉 〈 1, B〉
〈 0, C〉

W 〈 0, C〉
W 〈 1, B〉

W 〈 2, A〉

sync

〈 1, B〉

〈 2, A〉

sync

〈 2, A〉
〈 1, B〉

〈 0, C〉

32

Example: Disagreement on tentative writes
Time

Logs

A B C

〈 2, A〉 〈 1, B〉
〈 0, C〉

W 〈 0, C〉
W 〈 1, B〉

W 〈 2, A〉

sync

〈 1, B〉

〈 2, A〉

sync

〈 2, A〉
〈 1, B〉

〈 0, C〉

33

Tentative order ≠ commit order
Time

Logs

A B Pri

〈 -,10, A〉 〈 -,10, A〉

W 〈 -,20, B〉
W 〈 -,10, A〉

sync

C

sync

〈 -,20, B〉
〈 -,20, B〉

34

Tentative order ≠ commit order
Time

Logs

A B Pri

〈 -,10, A〉 〈 -,10, A〉

C

〈 -,20, B〉
〈 -,20, B〉

sync

〈 5,20, B〉 〈 5,20, B〉

sync

〈 6,10, A〉
〈 6,10, A〉

〈 5,20, B〉
〈 6,10, A〉

sync

• When nodes receive new CSNs, can discard all
committed log entries seen up to that point
– Update protocol à CSNs received in order

• Keep copy of whole database as of highest CSN

• Result: No need to keep years of log data

35

Trimming the log

• Suppose a user creates meeting, then decides to
delete or change it
– What CSN order must these ops have?

• Create first, then delete or modify
• Must be true in every node’s view of tentative log

entries, too

• Rule: Primary’s total write order must preserve
causal order of writes made at each node
– Not necessarily order among different nodes’ writes

36

Can primary commit writes in any order?

• Suppose nodes discard all writes in log with CSNs
– Just keep a copy of the “stable” DB, reflecting

discarded entries

• Cannot receive writes that conflict with stable DB
– Only could be if write had CSN less than a

discarded CSN
– Already saw all writes with lower CSNs in right

order: if see them again, can discard!

37

Syncing with trimmed logs

• To propagate to node X:

• If X’s highest CSN less than mine,
– Send X full stable DB; X uses that as starting point
– X can discard all his CSN log entries
– X plays his tentative writes into that DB

• If X’s highest CSN greater than mine,
– X can ignore my DB!

38

Syncing with trimmed logs (2)

• What about tentative updates?

• B tells A: highest local TS for each other node
– e.g., “X 30, Y 20”
– In response, A sends all X's updates after 〈-,30,X〉,

all Y's updates after 〈-,20,X〉, & c.
39

How to sync, quickly?

A B
〈 -,10, X〉 〈 -,10, X〉
〈 -,20, Y〉
〈 -,30, X〉
〈 -,40, X〉

〈 -,20, Y〉
〈 -,30, X〉

This is a version vector (“F” vector in Figure 4)
A’s F: [X:40,Y:20] B’s F: [X:30,Y:20]

• New server Z joins. Could it just start
generating writes, e.g. 〈-, 1, Z〉?
– And other nodes just start including Z in their

version vectors?

• If A syncs to B, A has 〈-, 10, Z〉
– But, B has no Z in its version vector

– A should pretend B’s version vector was [Z:0,...]

40

New server

• We want to stop including Z in version vectors!

• Z sends update: 〈 -, ?, Z〉 “retiring”
– If you see a retirement update, omit Z from VV

• Problem: How to deal with a VV that's missing Z?
– A has log entries from Z, but B’s VV has no Z entry

• e.g. A has 〈-, 25, Z〉, B’s VV is just [A:20, B:21]
– Maybe Z has retired, B knows, A does not
– Maybe Z is new, A knows, B does not

41

Server retirement

Need a way to disambiguate

• Idea: Z joins by contacting some server X
– New server identifier: id now is 〈 Tz, X〉

• Tz is X’s logical clock as of when Z joined

• X issues update 〈 -, Tz, X〉 “new server Z”

42

Bayou’s retirement plan

• Suppose Z’s ID is 〈20, X〉
– A syncs to B
– A has log entry from Z: 〈 -, 25, 〈 20,X〉 〉
– B’s VV has no Z entry

• One case: B’s VV: [X:10, ...]
– 10 < 20, so B hasn’t yet seen X’s “new server Z” update

• The other case: B’s VV: [X:30, ...]
– 20 < 30, so B once knew about Z, but then saw a

retirement update

43

Bayou’s retirement plan

• Is eventual consistency a useful idea?
• Yes: people want fast writes to local copies

iPhone sync, Dropbox, Dynamo, & c.

• Are update conflicts a real problem?
• Yes—all systems have some more or less awkward

solution

44

Let’s step back

• i.e. update function log, version vectors, tentative ops

• Only critical if you want peer-to-peer sync
– i.e. both disconnected operation and ad-hoc

connectivity

• Only tolerable if humans are main consumers of data
– Otherwise you can sync through a central server
– Or read locally but send updates through a master

45

Is Bayou’s complexity warranted?

1. Update functions for automatic application-
driven conflict resolution

2. Ordered update log is the real truth, not the DB

3. Application of Lamport logical clocks for
causal consistency

46

What are Bayou’s take-away ideas?

Next topic:
Scaling Services: Key-Value Storage

47

