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• NFS and 2PC all had single points of failure
– Not available under failures

• Distributed consensus algorithms allow view-change
to elect primary
– Strong consistency model
– Strong reachability requirements
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Availability versus consistency

If the network fails (common case), can we 
provide any consistency when we replicate?



• Eventual consistency: If no new updates to the 
object, eventually all accesses will return the last 
updated value

• Common: git, iPhone sync, Dropbox, Amazon Dynamo

• Why do people like eventual consistency?
– Fast read/write of local copy (no primary, no Paxos)
– Disconnected operation
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Eventual consistency

Issue: Conflicting writes to different copies
How to reconcile them when discovered?



• Meeting room calendar application as case study in 
ordering and conflicts in a distributed system with poor 
connectivity

• Each calendar entry = room, time, set of participants

• Want everyone to see the same set of entries, eventually
– Else users may double-book room

• or avoid using an empty room
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Bayou: A Weakly Connected
Replicated Storage System



5BYTE Magazine (1991)



• Want my calendar on a disconnected mobile phone
– i.e., each user wants database replicated on her 

mobile device
– No master copy

• Phone has only intermittent connectivity
– Mobile data expensive when roaming, Wi-Fi not 

everywhere, all the time
– Bluetooth useful for direct contact with other 

calendar users’ devices, but very short range
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What’s wrong with a central server?



• Suppose two users are in Bluetooth range

• Each sends entire calendar database to other

• Possibly expend lots of network bandwidth

• What if conflict, i.e., two concurrent meetings?
– iPhone sync keeps both meetings

– Want to do better: automatic conflict resolution
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Swap complete databases?



• Can’t just view the calendar database as abstract bits:
– Too little information to resolve conflicts:

1. “Both files have changed” can falsely conclude 
entire databases conflict

2. “Distinct record in each database changed” can 
falsely conclude no conflict
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Automatic conflict resolution



• Want intelligence that knows how to resolve 
conflicts

– More like users’ updates: read database, think, 
change request to eliminate conflict

– Must ensure all nodes resolve conflicts in the 
same way to keep replicas consistent
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Application-specific conflict resolution



• Suppose calendar update takes form:
– “10 AM meeting, Room=305, CS-240 staff”
– How would this handle conflicts?

• Better: write is an update function for the app
– “1-hour meeting at 10 AM if room is free, else 

11 AM, Room=305, CS-240 staff”
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What’s in a write?

Want all nodes to execute same 
instructions in same order, eventually



• Node A asks for meeting M1 at 10 AM, else 11 AM
• Node B asks for meeting M2 at 10 AM, else 11 AM

• X syncs with A, then B
• Y syncs with B, then A

• X will put meeting M1 at 10:00
• Y will put meeting M1 at 11:00
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Problem

Can’t just apply update functions to DB replicas



• Maintain an ordered list of updates at each node

– Make sure every node holds same updates
• And applies updates in the same order

– Make sure updates are a deterministic function of 
database contents

• If we obey the above, “sync” is a simple merge of two 
ordered lists
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Insight: Total ordering of updates

Write log



• Timestamp: 〈local timestamp T, originating node ID〉

• Ordering updates a and b:
– a < b if a.T < b.T, or (a.T = b.T and a.ID < b.ID)
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Agreeing on the update order



• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Pre-sync database state:
– A has M1 at 10 AM
– B has M2 at 10 AM

• What's the correct eventual outcome?   
– The result of executing update functions in 

timestamp order: M1 at 10 AM, M2 at 11 AM
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Write log example

Timestamp



• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Now A and B sync with each other.  Then:
– Each sorts new entries into its own log 

• Ordering by timestamp
– Both now know the full set of updates

• A can just run B’s update function
• But B has already run B’s operation, too soon!
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Write log example: Sync problem



• B needs to “roll back” the DB, and re-run both ops 
in the correct order

• So, in the user interface, displayed meeting room 
calendar entries are “tentative” at first
– B’s user saw M2 at 10 AM, then it moved to 11 AM 
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Solution: Roll back and replay

Big point: The log at each node holds the 
truth; the DB is just an optimization



• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Maybe B asked first by the wall clock
– But because of clock skew, A’s meeting has lower 

timestamp, so gets priority

• No, not “externally consistent”
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Is update order consistent with wall clock? 



• Suppose another example:

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈700, B〉: Delete update 〈701, A〉

– B’s clock was slow

• Now delete will be ordered before add
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Does update order respect causality?



• Want event timestamps so that if a node observes E1
then generates E2, then TS(E1) < TS(E2)

• Tmax = highest TS seen from any node (including self)  
• T = max(Tmax+1, wall-clock time), to generate TS

• Recall properties:
– E1 then E2 on same node è TS(E1) < TS(E2)    
– But TS(E1) < TS(E2) does not imply that 

E1 necessarily came before E2
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Lamport logical clocks respect causality



• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈700, B〉: Delete update 〈701, A〉
• 〈702, B〉: Delete update 〈701, A〉

• Now when B sees 〈701, A〉 it sets Tmax ß 701
– So it will then generate a delete update with a 

later timestamp
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Lamport clocks solve causality problem



• Ordering by timestamp arbitrarily constrains order
– Never know whether some write from the past 

may yet reach your node…

• So all entries in log must be tentative forever

• And you must store entire log forever

21

Timestamps for write ordering: Limitations

Problem: How can we allow committing a tentative 
entry, so we can trim logs and have meetings



• Strawman proposal: Update 〈10, A〉 is stable if all 
nodes have seen all updates with TS ≤ 10

• Have sync always send in log order
• If you have seen updates with TS > 10 from every 

node then you’ll never again see one < 〈10, A〉
– So 〈10, A〉 is stable

• Why doesn’t Bayou do this?
– A server that remains disconnected could prevent 

writes from stabilizing
• So many writes may be rolled back on re-connect
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Fully decentralized commit



• For log entry X to be committed, all servers must agree:

1. On the total order of all previous committed writes

2. That X is next in the total order

3. That all uncommitted entries are “after” X
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Criteria for committing writes



• Bayou uses a primary commit scheme
– One designated node (the primary) commits updates

• Primary marks each write it receives with a permanent 
CSN (commit sequence number)
– That write is committed
– Complete timestamp = 〈 CSN, local TS, node-id〉
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How Bayou commits writes

Advantage: Can pick a primary server 
close to locus of update activity



• Nodes exchange CSNs when they sync with each other

• CSNs define a total order for committed writes
– All nodes eventually agree on the total order
– Uncommitted writes come after all committed writes
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How Bayou commits writes (2)



• Still not safe to show users that an appointment 
request has committed!

• Entire log up to newly committed write must be 
committed
– Else there might be earlier committed write a node 

doesn’t know about!
• And upon learning about it, would have to re-run 

conflict resolution

• Bayou propagates writes between nodes to enforce this 
invariant, i.e. Bayou propagates writes in CSN order
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Showing users that writes are committed



• Suppose a node has seen every CSN up to a write, as 
guaranteed by propagation protocol

– Can then show user the write has committed

• Slow/disconnected node cannot prevent commits!

– Primary replica allocates CSNs; global order of 
writes may not reflect real-time write times
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Committed vs. tentative writes



• What about tentative writes, though—how do they 
behave, as seen by users?

• Two nodes may disagree on meaning of tentative 
(uncommitted) writes
– Even if those two nodes have synced with each other!

– Only CSNs from primary replica can resolve these 
disagreements permanently
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Tentative writes
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Example: Disagreement on tentative writes
Time

Logs

A B C

〈 2, A〉 〈 1, B〉 〈 0, C〉

W 〈 0, C〉
W 〈 1, B〉

W 〈 2, A〉

sync
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Example: Disagreement on tentative writes
Time

Logs

A B C

〈 2, A〉
〈 1, B〉 〈 0, C〉

W 〈 0, C〉
W 〈 1, B〉

W 〈 2, A〉

sync

〈 1, B〉
〈 2, A〉

sync
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Example: Disagreement on tentative writes
Time

Logs

A B C

〈 2, A〉 〈 1, B〉
〈 0, C〉

W 〈 0, C〉
W 〈 1, B〉

W 〈 2, A〉

sync

〈 1, B〉

〈 2, A〉

sync

〈 2, A〉
〈 1, B〉

〈 0, C〉
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Example: Disagreement on tentative writes
Time

Logs

A B C

〈 2, A〉 〈 1, B〉
〈 0, C〉

W 〈 0, C〉
W 〈 1, B〉

W 〈 2, A〉

sync

〈 1, B〉

〈 2, A〉

sync

〈 2, A〉
〈 1, B〉

〈 0, C〉
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Tentative order ≠ commit order
Time

Logs

A B Pri

〈 -,10, A〉 〈 -,10, A〉

W 〈 -,20, B〉
W 〈 -,10, A〉

sync

C

sync

〈 -,20, B〉
〈 -,20, B〉
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Tentative order ≠ commit order
Time

Logs

A B Pri

〈 -,10, A〉 〈 -,10, A〉

C

〈 -,20, B〉
〈 -,20, B〉

sync

〈 5,20, B〉 〈 5,20, B〉

sync

〈 6,10, A〉
〈 6,10, A〉

〈 5,20, B〉
〈 6,10, A〉

sync



• When nodes receive new CSNs, can discard all 
committed log entries seen up to that point
– Update protocol à CSNs received in order

• Keep copy of whole database as of highest CSN

• Result: No need to keep years of log data
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Trimming the log



• Suppose a user creates meeting, then decides to 
delete or change it
– What CSN order must these ops have?

• Create first, then delete or modify
• Must be true in every node’s view of tentative log 

entries, too

• Rule: Primary’s total write order must preserve 
causal order of writes made at each node
– Not necessarily order among different nodes’ writes
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Can primary commit writes in any order?



• Suppose nodes discard all writes in log with CSNs
– Just keep a copy of the “stable” DB, reflecting 

discarded entries

• Cannot receive writes that conflict with stable DB
– Only could be if write had CSN less than a 

discarded CSN
– Already saw all writes with lower CSNs in right 

order: if see them again, can discard!
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Syncing with trimmed logs



• To propagate to node X:

• If X’s highest CSN less than mine,
– Send X full stable DB; X uses that as starting point
– X can discard all his CSN log entries
– X plays his tentative writes into that DB

• If X’s highest CSN greater than mine,
– X can ignore my DB!
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Syncing with trimmed logs (2)



• What about tentative updates?

• B tells A: highest local TS for each other node
– e.g., “X 30, Y 20”
– In response, A sends all X's updates after 〈-,30,X〉, 

all Y's updates after 〈-,20,X〉, & c.
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How to sync, quickly?

A B
〈 -,10, X〉 〈 -,10, X〉
〈 -,20, Y〉
〈 -,30, X〉
〈 -,40, X〉

〈 -,20, Y〉
〈 -,30, X〉

This is a version vector (“F” vector in Figure 4) 
A’s F: [X:40,Y:20]  B’s F: [X:30,Y:20]



• New server Z joins.  Could it just start 
generating writes, e.g. 〈-, 1, Z〉?
– And other nodes just start including Z in their 

version vectors?

• If A syncs to B, A has 〈-, 10, Z〉
– But, B has no Z in its version vector

– A should pretend B’s version vector was [Z:0,...]
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New server



• We want to stop including Z in version vectors!

• Z sends update: 〈 -, ?, Z〉 “retiring”
– If you see a retirement update, omit Z from VV

• Problem: How to deal with a VV that's missing Z?
– A has log entries from Z, but B’s VV has no Z entry

• e.g. A has 〈-, 25, Z〉, B’s VV is just [A:20, B:21]
– Maybe Z has retired, B knows, A does not
– Maybe Z is new, A knows, B does not
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Server retirement

Need a way to disambiguate



• Idea: Z joins by contacting some server X
– New server identifier: id now is 〈 Tz, X〉

• Tz is X’s logical clock as of when Z joined

• X issues update 〈 -, Tz, X〉 “new server Z”
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Bayou’s retirement plan



• Suppose Z’s ID is 〈20, X〉
– A syncs to B
– A has log entry from Z: 〈 -, 25, 〈 20,X〉 〉
– B’s VV has no Z entry

• One case: B’s VV: [X:10, ...]
– 10 < 20, so B hasn’t yet seen X’s “new server Z” update

• The other case: B’s VV: [X:30, ...]
– 20 < 30, so B once knew about Z, but then saw a 

retirement update

43

Bayou’s retirement plan



• Is eventual consistency a useful idea?
• Yes: people want fast writes to local copies  

iPhone sync, Dropbox, Dynamo, & c.

• Are update conflicts a real problem?  
• Yes—all systems have some more or less awkward 

solution
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Let’s step back



• i.e. update function log, version vectors, tentative ops

• Only critical if you want peer-to-peer sync
– i.e. both disconnected operation and ad-hoc 

connectivity

• Only tolerable if humans are main consumers of data
– Otherwise you can sync through a central server 
– Or read locally but send updates through a master
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Is Bayou’s complexity warranted?



1. Update functions for automatic application-
driven conflict resolution

2. Ordered update log is the real truth, not the DB

3. Application of Lamport logical clocks for 
causal consistency
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What are Bayou’s take-away ideas?



Next topic:
Scaling Services: Key-Value Storage
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