Scaling Services: Partitioning, Hashing, Key-Value Storage

CS 240: Computing Systems and Concurrency Lecture 14

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Selected content adapted from B. Karp, R. Morris.

Horizontal or vertical scalability?

Horizontal Scaling

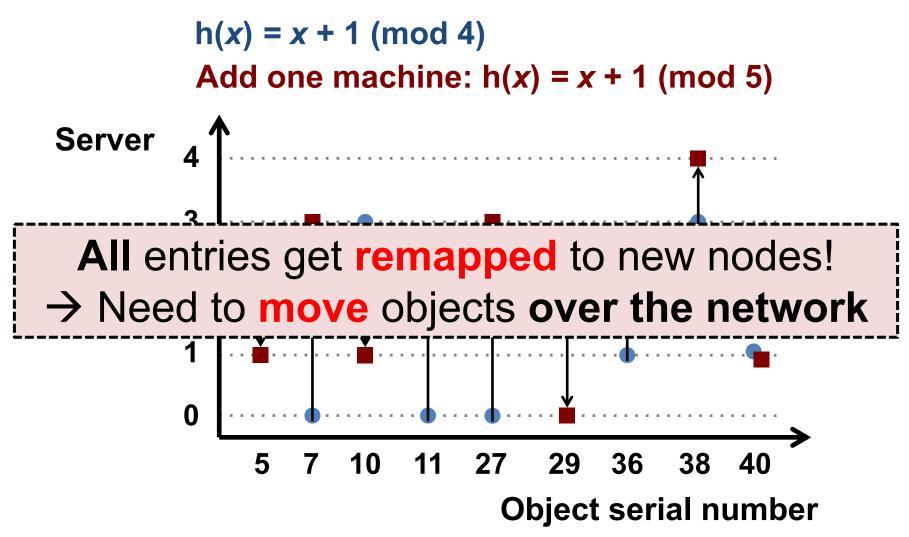
Horizontal scaling is chaotic

- Probability of any failure in given period = $1-(1-p)^n$
 - -p = probability a machine fails in given period
 - -n = number of machines

- For 50K machines, each with 99.99966% available
 - 16% of the time, data center experiences failures
- For 100K machines, failures 30% of the time!

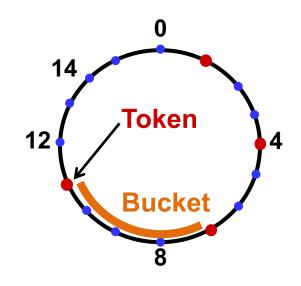
Today

- 1. Techniques for partitioning data
 - Metrics for success
- 2. Case study: Amazon Dynamo key-value store


Scaling out: Partition and place

- Partition management
 - Including how to recover from node failure
 - e.g., bringing another node into partition group
 - Changes in system size, i.e. nodes joining/leaving
- Data placement
 - On which node(s) to place a partition?
 - Maintain mapping from data object to responsible node(s)
- Centralized: Cluster manager
- Decentralized: Deterministic hashing and algorithms

Modulo hashing


- Consider problem of data partition:
 - Given object id X, choose one of k servers to use
- Suppose instead we use modulo hashing:
 - Place X on server $i = hash(X) \mod k$
- What happens if a server fails or joins (k ← k±1)?
 - or different clients have different estimate of k?

Problem for modulo hashing: Changing number of servers

Consistent hashing

- Assign *n* tokens to random points on mod 2^k circle; hash key size = k
- Hash object to random circle position
- Put object in closest clockwise bucket
 - successor (key) → bucket

- Desired features
 - Balance: No bucket has "too many" objects
 - Smoothness: Addition/removal of token
 minimizes object movements for other buckets

Consistent hashing's load balancing problem

- Each node owns 1/nth of the ID space in expectation
 - Says nothing of request load per bucket

- If a node fails, its successor takes over bucket
 - Smoothness goal ✓: Only localized shift, not O(n)
 - But now successor owns two buckets: 2/nth of key space
 - The failure has upset the load balance

Virtual nodes

- Idea: Each physical node now maintains v > 1 tokens
 - Each token corresponds to a virtual node
- Each virtual node owns an expected 1/(vn)th of ID space
- Upon a physical node's failure, v successors take over, each now stores (v+1)/v × 1/nth of ID space
- Result: Better load balance with larger v

Today

1. Techniques for partitioning data

2. Case study: the Amazon Dynamo keyvalue store

Dynamo: The P2P context

- Chord and DHash intended for wide-area P2P systems
 - Individual nodes at Internet's edge, file sharing
- Central challenges: low-latency key lookup with small forwarding state per node
- Techniques:
 - Consistent hashing to map keys to nodes
 - Replication at successors for availability under failure

Amazon's workload (in 2007)

- Tens of thousands of servers in globally-distributed data centers
- Peak load: Tens of millions of customers
- Tiered service-oriented architecture
 - Stateless web page rendering servers, atop
 - Stateless aggregator servers, atop
 - Stateful data stores (e.g. Dynamo)
 - put(), get(): values "usually less than 1 MB"

How does Amazon use Dynamo?

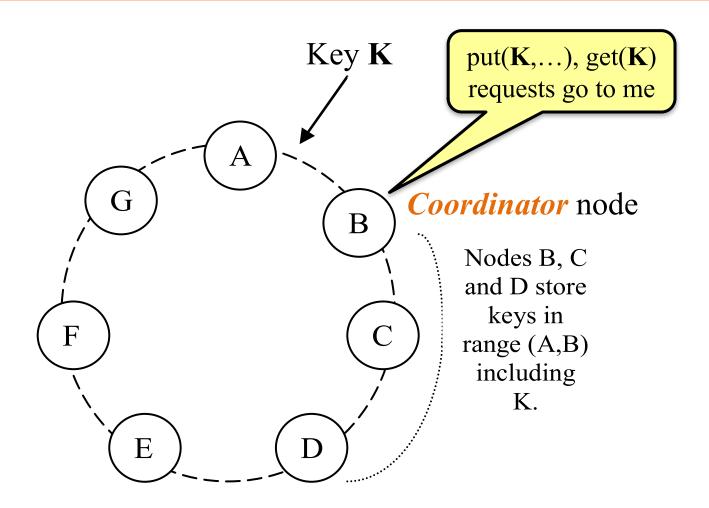
Dynamo requirements

- Highly available writes despite failures
 - Despite disks failing, network routes flapping, "data centers destroyed by tornadoes"
 - **Non-requirement:** Security, *viz.* authentication, authorization (used in a non-hostile environment)
- Low request-response latency: focus on 99.9% SLA
- Incrementally scalable as servers grow to workload
 - Adding "nodes" should be seamless
- Comprehensible conflict resolution
 - High availability in above sense implies conflicts

Design questions

- How is data placed and replicated?
- How are requests routed and handled in a replicated system?
- How to cope with temporary and permanent node failures?

Dynamo's system interface


- Basic interface is a key-value store
 - get(k) and put(k, v)
 - Keys and values opaque to Dynamo
- get(key) → value, context
 - Returns one value or multiple conflicting values
 - Context describes version(s) of value(s)
- put(key, context, value) → "OK"
 - Context indicates which versions this version supersedes or merges

Dynamo's techniques

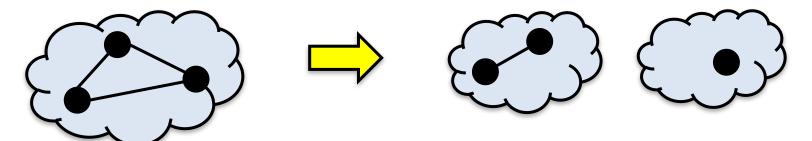
- Place replicated data on nodes with consistent hashing
- Maintain consistency of replicated data with vector clocks
 - Eventual consistency for replicated data: prioritize success and low latency of writes over reads
 - And availability over consistency (unlike DBs)
- Efficiently synchronize replicas using Merkle trees

Key trade-offs: Response time vs. consistency vs. durability

Data placement

Each data item is **replicated** at N virtual nodes (e.g., N = 3)

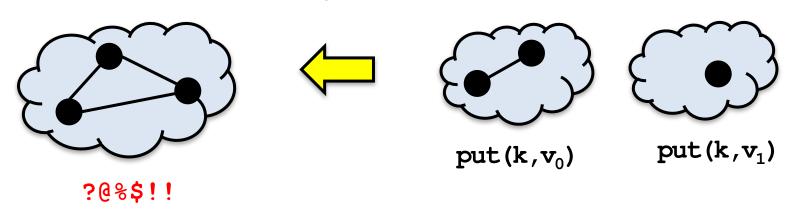
Data replication


- Much like in Chord: a key-value pair → key's N successors (preference list)
 - Coordinator receives a put for some key
 - Coordinator then replicates data onto nodes in the key's preference list
- Preference list size > N to account for node failures
- For robustness, the preference list skips tokens to ensure distinct physical nodes

Gossip and "lookup"

- Gossip: Once per second, each node contacts a randomly chosen other node
 - They exchange their lists of known nodes (including virtual node IDs)
- Each node learns which others handle all key ranges
 - Result: All nodes can send directly to any key's coordinator ("zero-hop DHT")
 - Reduces variability in response times

Partitions force a choice between availability and consistency


Suppose three replicas are partitioned into two and one

- If one replica fixed as master, no client in other partition can write
- In Paxos-based primary-backup, no client in the partition of one can write
- Traditional distributed databases emphasize consistency over availability when there are partitions

Alternative: Eventual consistency

- Dynamo emphasizes availability over consistency when there are partitions
- Tell client write complete when only some replicas have stored it
- Propagate to other replicas in background
- Allows writes in both partitions...but risks:
 - Returning stale data
 - Write conflicts when partition heals:

Mechanism: Sloppy quorums

- If no failure, reap consistency benefits of single master
 - Else sacrifice consistency to allow progress
- Dynamo tries to store all values put() under a key on first N live nodes of coordinator's preference list
- BUT to speed up get() and put():
 - Coordinator returns "success" for put when W < N replicas have completed write
 - Coordinator returns "success" for get when R < N replicas have completed read

Sloppy quorums: Hinted handoff

- Suppose coordinator doesn't receive W replies when replicating a put()
 - Could return failure, but remember goal of high availability for writes...

- Hinted handoff: Coordinator tries next successors in preference list (beyond first N) if necessary
 - Indicates the intended replica node to recipient
 - Recipient will periodically try to forward to the intended replica node

Hinted handoff: Example

Suppose C fails

Node E is in preference list

 Needs to receive replica of the data

Hinted Handoff: replica at Expoints to node C

R Of

G

Coordinator

Nodes B, C
and D store
keys in
range (A,B)
including
K.

Key K

- When C comes back
 - E forwards the replicated data back to C

Wide-area replication

- Last ¶, § 4.6: Preference lists always contain nodes from more than one data center
 - Consequence: Data likely to survive failure of entire data center

- Blocking on writes to a remote data center would incur unacceptably high latency
 - Compromise: W < N, eventual consistency</p>

Sloppy quorums and get()s

- Suppose coordinator doesn't receive R replies when processing a get()
 - Penultimate ¶, § 4.5: "R is the min. number of nodes that must participate in a successful read operation."
 - Sounds like these get()s fail
- Why not return whatever data was found, though?
 - As we will see, consistency not guaranteed anyway...

Sloppy quorums and freshness

- Common case given in paper: N = 3, R = W = 2
 - With these values, do sloppy quorums guarantee a get() sees all prior put()s?

- If no failures, yes:
 - Two writers saw each put()
 - Two readers responded to each get()
 - Write and read quorums must overlap!

Sloppy quorums and freshness

- Common case given in paper: N = 3, R = W = 2
 - With these values, do sloppy quorums guarantee a get() sees all prior put()s?

- With node failures, no:
 - Two nodes in preference list go down
 - put() replicated outside preference list
 - Two nodes in preference list come back up
 - get() occurs before they receive prior put()

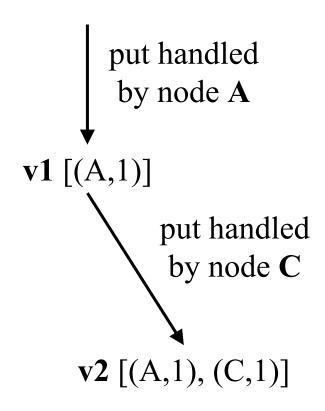
Conflicts

- Suppose N = 3, W = R = 2, nodes are named A, B, C
 - 1st put(k, ...) completes on **A** and **B**
 - 2nd put(k, ...) completes on **B** and **C**
 - Now get(k) arrives, completes first at A and C
- Conflicting results from A and C
 - Each has seen a different put(k, ...)
- Dynamo returns both results; what does client do now?

Conflicts vs. applications

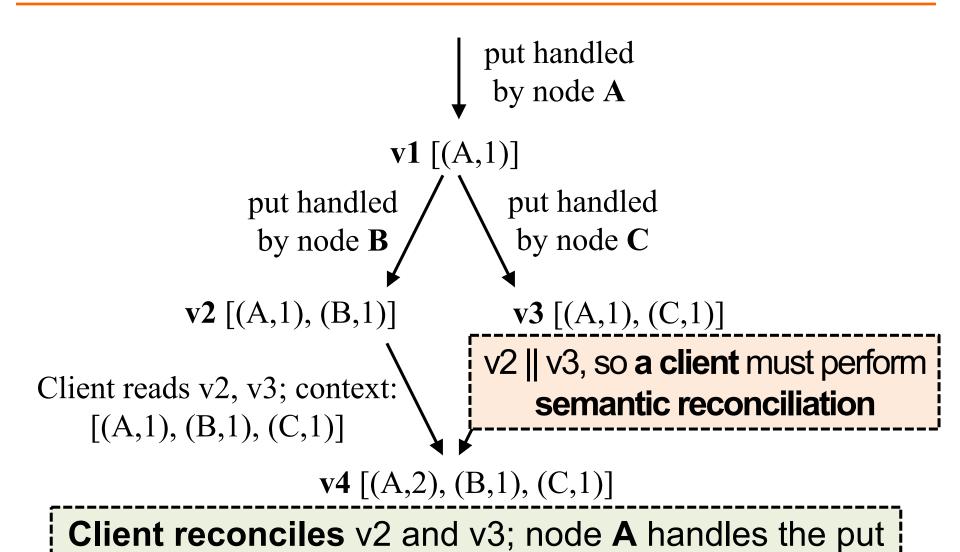
- Shopping cart:
 - Could take union of two shopping carts
 - What if second put() was result of user deleting item from cart stored in first put()?
 - Result: "resurrection" of deleted item

- Can we do better? Can Dynamo resolve cases when multiple values are found?
 - Sometimes. If it can't, application must do so.


Version vectors (vector clocks)

- Version vector: List of (coordinator node, counter) pairs
 e.g., [(A, 1), (B, 3), ...]
- Dynamo stores a version vector with each stored keyvalue pair
- Idea: track "ancestor-descendant" relationship between different versions of data stored under the same key k

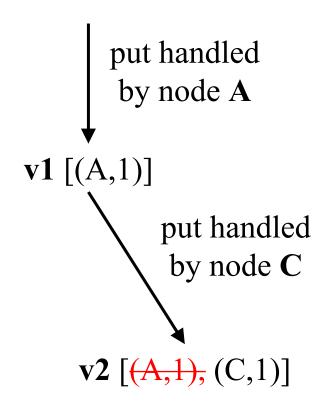
Version vectors: Dynamo's mechanism


- Rule: If vector clock comparison of v1 < v2, then the first is an ancestor of the second – Dynamo can forget v1
- Each time a put() occurs, Dynamo increments the counter in the V.V. for the coordinator node
- Each time a get() occurs, Dynamo returns the V.V. for the value(s) returned (in the "context")
 - Then users must supply that context to put()s that modify the same key

Version vectors (auto-resolving case)

v2 > v1, so Dynamo nodes automatically drop v1, for v2

Version vectors (app-resolving case)


36

Trimming version vectors

- Many nodes may process a series of put()s to same key
 - Version vectors may get long do they grow forever?

- No, there is a clock truncation scheme
 - Dynamo stores time of modification with each V.V. entry
 - When V.V. > 10 nodes long, V.V. drops the timestamp of the node that least recently processed that key

Impact of deleting a VV entry?

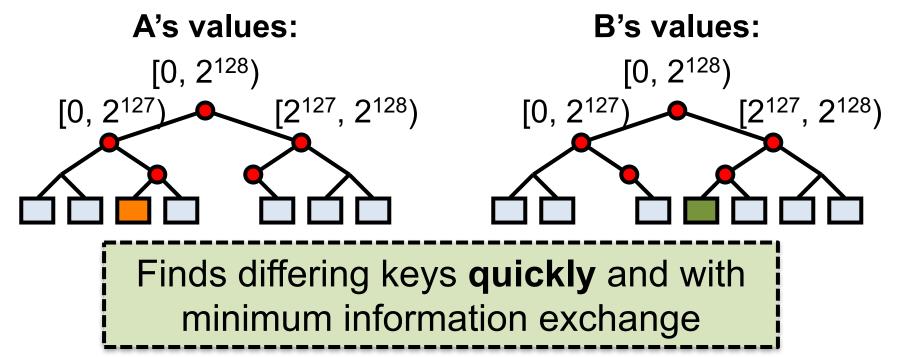
v2 | v1, so looks like application resolution is required

Concurrent writes

- What if two clients concurrently write w/o failure?
 - e.g. add different items to same cart at same time
 - Each does get-modify-put
 - They both see the same initial version
 - And they both send put() to same coordinator
- Will coordinator create two versions with conflicting VVs?
 - We want that outcome, otherwise one was thrown away
 - Paper doesn't say, but coordinator could detect problem via put() context

Removing threats to durability

- Hinted handoff node crashes before it can replicate data to node in preference list
 - Need another way to ensure that each key-value pair is replicated N times
- Mechanism: replica synchronization
 - Nodes nearby on ring periodically gossip
 - Compare the (k, v) pairs they hold
 - Copy any missing keys the other has


How to compare and copy replica state quickly and efficiently?

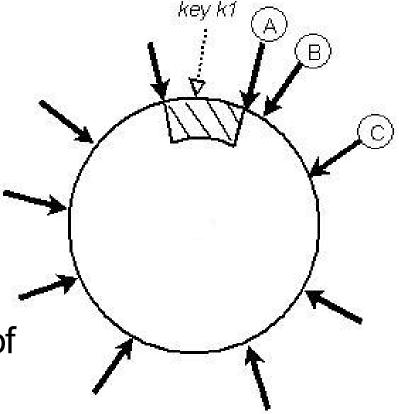
Efficient synchronization with Merkle trees

- Merkle trees hierarchically summarize the key-value pairs a node holds
- One Merkle tree for each virtual node key range
 - Leaf node = hash of one key's value
 - Internal node = hash of concatenation of children
- Compare roots; if match, values match
 - If they don't match, compare children
 - Iterate this process down the tree

Merkle tree reconciliation

- B is missing orange key; A is missing green one
- Exchange and compare hash nodes from root downwards, pruning when hashes match

How useful is it to vary N, R, W?

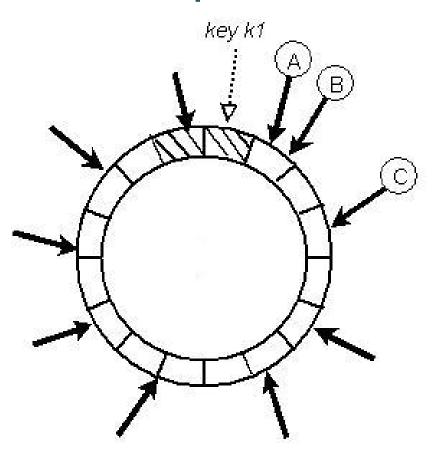

N	R	W	Behavior
3	2	2	Parameters from paper: Good durability, good R/W latency
3	3	1	Slow reads, weak durability, fast writes
3	1	3	Slow writes, strong durability, fast reads
3	3	3	More likely that reads see all prior writes?
3	1	1	Read quorum doesn't overlap write quorum

Evolution of partitioning and placement

Strategy 1: Chord + virtual nodes partitioning and placement

- New nodes "steal" key ranges from other nodes
 - Scan of data store from "donor" node took a day

 Burdensome recalculation of Merkle trees on join/leave

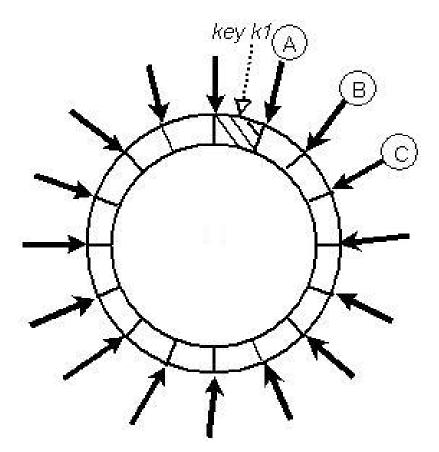


Evolution of partitioning and placement

Strategy 2: Fixed-size partitions, random token placement

Q partitions: fixed and equally sized

- Placement: T virtual nodes per physical node (random tokens)
 - Place the partition on first
 N nodes after its end


Evolution of partitioning and placement

Strategy 3: Fixed-size partitions, equal tokens per partition

Q partitions: fixed and equally sized

S total nodes in the system

Placement: Q/S tokens per partition

Dynamo: Take-away ideas

- Consistent hashing broadly useful for replication—not only in P2P systems
- Extreme emphasis on availability and low latency, unusually, at the cost of some inconsistency
- Eventual consistency lets writes and reads return quickly, even when partitions and failures
- Version vectors allow some conflicts to be resolved automatically; others left to application

Next topic: Strong consistency and CAP Theorem