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• Local file systems
– Disks are terrible abstractions: low-level blocks, etc.
– Directories, files, links much better

• Distributed file systems
– Make a remote file system look local
– Today:  NFS (Network File System)

• Developed by Sun in 1980s, still used today!
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Abstraction, abstraction, abstraction!



3 Goals: Make operations appear:
Local

Consistent

Fast
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NFS Architecture

“Mount” remote FS (host:path) as local directories
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Virtual File System enables transparency



Interfaces matter
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fd = open(“path”, flags)

read(fd, buf, n)

write(fd, buf, n)

close(fd)

Server maintains state that maps fd to inode, offset
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VFS / Local FS



fd = open(“path”, flags)

read(“path”, buf, n)

write(“path”, buf, n)

close(fd)
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Stateless NFS:  Strawman 1



fd = open(“path”, flags)

read(“path”, offset, buf, n)

write(“path”, offset, buf, n)

close(fd)
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Stateless NFS:  Strawman 2
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Embed pathnames in syscalls?

• Should read refer to current dir1/f or dir2/f ?

• In UNIX, it’s dir2/f. How do we preserve in NFS?



fh = lookup(“path”, flags)

read(fh, offset, buf, n)

write(fh, offset, buf, n)

getattr(fh)

Implemented as Remote Procedure Calls (RPCs)
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Stateless NFS (for real)



NFS File Handles (fh)

• Opaque identifier provider to client from server

• Includes all info needed to identify file/object on server

volume ID |  inode # | generation #

• It’s a trick: “store” server state at the client!



• With generation #’s, client 2 continues to interact with 
“correct” file, even while client 1 has changed “ f ”

• This versioning appears in many contexts,              
e.g., MVCC (multiversion concurrency control) in DBs
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NFS File Handles (and versioning)
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NFS example

fd = open(”/foo”, ...);
Send LOOKUP (rootdir FH, ”foo”)

Receive LOOKUP request
look for ”foo” in root dir
return foo’s FH + attributes

Receive LOOKUP reply
allocate file desc in open file table
store foo’s FH in table
store current file position (0)
return file descriptor to application 
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NFS example
read(fd, buffer, MAX);
Index into open file table with fd
get NFS file handle (FH)
use current file position as offset 

Send READ (FH, offset=0, count=MAX) 

Receive READ request
use FH to get volume/inode num
read inode from disk (or cache)
compute block location (using offset)
read data from disk (or cache)
return data to client 

Receive READ reply
update file position (+bytes read)
set current file position = MAX
return data/error code to app 
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NFS example

read(fd, buffer, MAX);
Same except offset=MAX and
set current file position = 2*MAX 

read(fd, buffer, MAX);
Same except offset=2*MAX and
set current file position = 3*MAX 

close(fd); 
Just need to clean up local structures
Free descriptor ”fd” in open file table
(No need to talk to server) 



• What to do when server is not responding?
– Retry again!

• set a timer; a reply before cancels the retry; else retry

• Is it safe to retry operations?
– NFS operations are idempotent

• the effect of multiple invocations is same as single one
– LOOKUP, READ, WRITE: message contains all that is 

necessary to re-execute
– What is not idempotent?

• E.g., if we had INCREMENT
• Real example: MKDIR is not
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Handling server failures



Are remote == local?



• With local FS, read sees data from “most recent” 
write, even if performed by different process
– “Read/write coherence”, linearizability

• Achieve the same with NFS?
– Perform all reads & writes synchronously to server
– Huge cost:  high latency, low scalability

• And what if the server doesn’t return?
– Options:  hang indefinitely, return ERROR
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TANSTANFL
(There ain’t no such thing as a free lunch)

All operations appear to have 
executed atomically in an order 
that is consistent with the global 
real-time ordering of operations. 

(Herlihy & Wing, 1991)



Caching GOOD
Lower latency, better scalability

Consistency HARDER
No longer one single copy of data, 

to which all operations are serialized
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Caching options
• Centralized control:   Record status of clients               

(which files open for reading/writing, what cached, …)

• Read-ahead:  Pre-fetch blocks before needed

• Write-through:  All writes sent to server

• Write-behind:  Writes locally buffered, send as batch



• Consistency challenges:
– When client writes, how do others caching data get 

updated?  (Callbacks, …)
– Two clients concurrently write? (Locking, overwrite, …)
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Cache consistency problem

C1
cache: F[v1]

C2
cache: F[v2]

C3
cache: empty

Server S
disk: F[v1] at first

F[v2] eventually



Should server maintain per-client state? 

Stateful
• Pros

– Smaller requests
– Simpler req processing
– Better cache coherence, 

file locking, etc.
• Cons

– Per-client state limits 
scalability

– Fault-tolerance on state 
required for correctness

Stateless
• Pros

– Easy server crash recovery
– No open/close needed
– Better scalability

• Cons
– Each request must be    

fully self-describing
– Consistency is harder,    

e.g., no simple file locking



• Hard state:  Don’t lose data
– Durability:  State not lost

• Write to disk, or cold remote backup
• Exact replica or recoverable (DB: checkpoint + op log)

– Availability (liveness):  Maintain online replicas

• Soft state:  Performance optimization
– Then:  Lose at will

– Now:  Yes for correctness (safety), but how does recovery 
impact availability (liveness)?
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It’s all about the state, ’bout the state, …



• Stateless protocol
– Recovery easy: crashed == slow server
– Messages over UDP (unencrypted)

• Read from server, caching in NFS client

• NFSv2 was write-through (i.e., synchronous)

• NFSv3 added write-behind
– Delay writes until close or fsync from application
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NFS



• Write-to-read semantics too expensive
– Give up caching, require server-side state, or …

• Close-to-open “session” semantics
– Ensure an ordering, but only between application 
close and open, not all writes and reads.

– If B opens after A closes, will see A’s writes
– But if two clients open at same time?  No guarantees

• And what gets written? “Last writer wins”

26

Exploring the consistency tradeoffs



• Recall challenge:  Potential concurrent writers

• Cache validation:
– Get file’s last modification time from server: getattr(fh)
– Both when first open file, then poll every 3-60 seconds

• If server’s last modification time has changed, flush dirty blocks 
and invalidate cache

• When reading a block
– Validate:  (current time – last validation time < threshold)

– If valid, serve from cache.  Otherwise, refresh from server
27

NFS Cache Consistency



• “Mixed reads” across version
– A reads block 1-10 from file, B replaces blocks 1-20,      

A then keeps reading blocks 11-20. 

• Assumes synchronized clocks.  Not really correct.
– We’ll learn about the notion of logical clocks later

• Writes specified by offset
– Concurrent writes can change offset
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Some problems…
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Server-side write buffering

write(fd, a_buffer, size); // fill first block with a’s
write(fd, b_buffer, size); // fill second block with b’s
write(fd, c_buffer, size); // fill third block with c’s 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

Expected:

But assume server buffers 2nd write, reports OK but then crashes:
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

Server must commit each write to stable (persistent) storage 
before informing the client of success 



When statefulness helps

Callbacks
Locks + Leases
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• Recall challenge:  Potential concurrent writers

• Timestamp invalidation:  NFS

• Callback invalidation:  AFS, Sprite, Spritely NFS
• Server tracks all clients that have opened file
• On write, sends notification to clients if file changes;

client invalidates cache

• Leases:  Gray & Cheriton ’89, NFSv4
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NFS Cache Consistency



• A client can request a lock over a file / byte range
– Advisory: Well-behaved clients comply

– Mandatory: Server-enforced 

• Client performs writes, then unlocks

• Problem: What if the client crashes?
– Solution: Keep-alive timer: Recover lock on timeout

• Problem: what if client alive but network route failed?

– Client thinks it has lock, server gives lock to other:  “Split brain”
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Locks



Leases

• Client obtains lease on file for read or write
– “A lease is a ticket permitting an activity; the lease is 

valid until some expiration time.”

• Read lease allows client to cache clean data
– Guarantee: no other client is modifying file

• Write lease allows safe delayed writes
– Client can locally modify then batch writes to server
– Guarantee: no other client has file cached



• Client requests a lease 
– May be implicit, distinct from file locking
– Issued lease has file version number for cache coherence

• Server determines if lease can be granted
– Read leases may be granted concurrently
– Write leases are granted exclusively 

• If conflict exists, server may send eviction notices
– Evicted write lease must write back
– Evicted read leases must flush/disable caching
– Client acknowledges when completed
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Using leases



Bounded lease term simplifies recovery

• Before lease expires, client must renew lease

• Client fails while holding a lease?
– Server waits until the lease expires, then unilaterally reclaims 
– If client fails during eviction, server waits then reclaims

• Server fails while leases outstanding?  On recovery,
– Wait lease period + clock skew before issuing new leases
– Absorb renewal requests and/or writes for evicted leases



Requirements dictate design
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Case Study:  AFS



Andrew File System (CMU 1980s-)
• Scalability was key design goal

– Many servers, 10,000s of users

• Observations about workload
– Reads much more common than writes
– Concurrent writes are rare / writes between users disjoint

• Interfaces in terms of files, not blocks
– Whole-file serving:  entire file and directories
– Whole-file caching: clients cache files to local disk

• Large cache and permanent, so persists across reboots



AFS:  Consistency
• Consistency:  Close-to-open consistency

– No mixed writes, as whole-file caching / whole-file overwrites

– Update visibility:  Callbacks to invalidate caches

• What about crashes or partitions?
– Client invalidates cache iff

• Recovering from failure

• Regular liveness check to server (heartbeat) fails.

– Server assumes cache invalidated if callbacks fail  + 
heartbeat period exceeded



Next lecture topic:
Google File System (GFS)
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