
Network File Systems

CS 240: Computing Systems and Concurrency
Lecture 4

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

• Local file systems
– Disks are terrible abstractions: low-level blocks, etc.
– Directories, files, links much better

• Distributed file systems
– Make a remote file system look local
– Today: NFS (Network File System)

• Developed by Sun in 1980s, still used today!

2

Abstraction, abstraction, abstraction!

3 Goals: Make operations appear:
Local

Consistent

Fast

3

NFS Architecture

“Mount” remote FS (host:path) as local directories

jim jane joeann

usersstudents

usrvmuni x

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Virtual File System enables transparency

Interfaces matter

6

fd = open(“path”, flags)

read(fd, buf, n)

write(fd, buf, n)

close(fd)

Server maintains state that maps fd to inode, offset

7

VFS / Local FS

fd = open(“path”, flags)

read(“path”, buf, n)

write(“path”, buf, n)

close(fd)

8

Stateless NFS: Strawman 1

fd = open(“path”, flags)

read(“path”, offset, buf, n)

write(“path”, offset, buf, n)

close(fd)

9

Stateless NFS: Strawman 2

10

Embed pathnames in syscalls?

• Should read refer to current dir1/f or dir2/f ?

• In UNIX, it’s dir2/f. How do we preserve in NFS?

fh = lookup(“path”, flags)

read(fh, offset, buf, n)

write(fh, offset, buf, n)

getattr(fh)

Implemented as Remote Procedure Calls (RPCs)

11

Stateless NFS (for real)

NFS File Handles (fh)

• Opaque identifier provider to client from server

• Includes all info needed to identify file/object on server

volume ID | inode # | generation #

• It’s a trick: “store” server state at the client!

• With generation #’s, client 2 continues to interact with
“correct” file, even while client 1 has changed “ f ”

• This versioning appears in many contexts,
e.g., MVCC (multiversion concurrency control) in DBs

13

NFS File Handles (and versioning)

14

NFS example

fd = open(”/foo”, ...);
Send LOOKUP (rootdir FH, ”foo”)

Receive LOOKUP request
look for ”foo” in root dir
return foo’s FH + attributes

Receive LOOKUP reply
allocate file desc in open file table
store foo’s FH in table
store current file position (0)
return file descriptor to application

15

NFS example
read(fd, buffer, MAX);
Index into open file table with fd
get NFS file handle (FH)
use current file position as offset

Send READ (FH, offset=0, count=MAX)

Receive READ request
use FH to get volume/inode num
read inode from disk (or cache)
compute block location (using offset)
read data from disk (or cache)
return data to client

Receive READ reply
update file position (+bytes read)
set current file position = MAX
return data/error code to app

16

NFS example

read(fd, buffer, MAX);
Same except offset=MAX and
set current file position = 2*MAX

read(fd, buffer, MAX);
Same except offset=2*MAX and
set current file position = 3*MAX

close(fd);
Just need to clean up local structures
Free descriptor ”fd” in open file table
(No need to talk to server)

• What to do when server is not responding?
– Retry again!

• set a timer; a reply before cancels the retry; else retry

• Is it safe to retry operations?
– NFS operations are idempotent

• the effect of multiple invocations is same as single one
– LOOKUP, READ, WRITE: message contains all that is

necessary to re-execute
– What is not idempotent?

• E.g., if we had INCREMENT
• Real example: MKDIR is not

17

Handling server failures

Are remote == local?

• With local FS, read sees data from “most recent”
write, even if performed by different process
– “Read/write coherence”, linearizability

• Achieve the same with NFS?
– Perform all reads & writes synchronously to server
– Huge cost: high latency, low scalability

• And what if the server doesn’t return?
– Options: hang indefinitely, return ERROR

19

TANSTANFL
(There ain’t no such thing as a free lunch)

All operations appear to have
executed atomically in an order
that is consistent with the global
real-time ordering of operations.

(Herlihy & Wing, 1991)

Caching GOOD
Lower latency, better scalability

Consistency HARDER
No longer one single copy of data,

to which all operations are serialized

20

Caching options
• Centralized control: Record status of clients

(which files open for reading/writing, what cached, …)

• Read-ahead: Pre-fetch blocks before needed

• Write-through: All writes sent to server

• Write-behind: Writes locally buffered, send as batch

• Consistency challenges:
– When client writes, how do others caching data get

updated? (Callbacks, …)
– Two clients concurrently write? (Locking, overwrite, …)

22

Cache consistency problem

C1
cache: F[v1]

C2
cache: F[v2]

C3
cache: empty

Server S
disk: F[v1] at first

F[v2] eventually

Should server maintain per-client state?

Stateful
• Pros

– Smaller requests
– Simpler req processing
– Better cache coherence,

file locking, etc.
• Cons

– Per-client state limits
scalability

– Fault-tolerance on state
required for correctness

Stateless
• Pros

– Easy server crash recovery
– No open/close needed
– Better scalability

• Cons
– Each request must be

fully self-describing
– Consistency is harder,

e.g., no simple file locking

• Hard state: Don’t lose data
– Durability: State not lost

• Write to disk, or cold remote backup
• Exact replica or recoverable (DB: checkpoint + op log)

– Availability (liveness): Maintain online replicas

• Soft state: Performance optimization
– Then: Lose at will

– Now: Yes for correctness (safety), but how does recovery
impact availability (liveness)?

24

It’s all about the state, ’bout the state, …

• Stateless protocol
– Recovery easy: crashed == slow server
– Messages over UDP (unencrypted)

• Read from server, caching in NFS client

• NFSv2 was write-through (i.e., synchronous)

• NFSv3 added write-behind
– Delay writes until close or fsync from application

25

NFS

• Write-to-read semantics too expensive
– Give up caching, require server-side state, or …

• Close-to-open “session” semantics
– Ensure an ordering, but only between application
close and open, not all writes and reads.

– If B opens after A closes, will see A’s writes
– But if two clients open at same time? No guarantees

• And what gets written? “Last writer wins”

26

Exploring the consistency tradeoffs

• Recall challenge: Potential concurrent writers

• Cache validation:
– Get file’s last modification time from server: getattr(fh)
– Both when first open file, then poll every 3-60 seconds

• If server’s last modification time has changed, flush dirty blocks
and invalidate cache

• When reading a block
– Validate: (current time – last validation time < threshold)

– If valid, serve from cache. Otherwise, refresh from server
27

NFS Cache Consistency

• “Mixed reads” across version
– A reads block 1-10 from file, B replaces blocks 1-20,

A then keeps reading blocks 11-20.

• Assumes synchronized clocks. Not really correct.
– We’ll learn about the notion of logical clocks later

• Writes specified by offset
– Concurrent writes can change offset

28

Some problems…

29

Server-side write buffering

write(fd, a_buffer, size); // fill first block with a’s
write(fd, b_buffer, size); // fill second block with b’s
write(fd, c_buffer, size); // fill third block with c’s

xx
yy
zz

aa
bb
cc

Expected:

But assume server buffers 2nd write, reports OK but then crashes:
aa
yy
cc

Server must commit each write to stable (persistent) storage
before informing the client of success

When statefulness helps

Callbacks
Locks + Leases

30

• Recall challenge: Potential concurrent writers

• Timestamp invalidation: NFS

• Callback invalidation: AFS, Sprite, Spritely NFS
• Server tracks all clients that have opened file
• On write, sends notification to clients if file changes;

client invalidates cache

• Leases: Gray & Cheriton ’89, NFSv4

31

NFS Cache Consistency

• A client can request a lock over a file / byte range
– Advisory: Well-behaved clients comply

– Mandatory: Server-enforced

• Client performs writes, then unlocks

• Problem: What if the client crashes?
– Solution: Keep-alive timer: Recover lock on timeout

• Problem: what if client alive but network route failed?

– Client thinks it has lock, server gives lock to other: “Split brain”

32

Locks

Leases

• Client obtains lease on file for read or write
– “A lease is a ticket permitting an activity; the lease is

valid until some expiration time.”

• Read lease allows client to cache clean data
– Guarantee: no other client is modifying file

• Write lease allows safe delayed writes
– Client can locally modify then batch writes to server
– Guarantee: no other client has file cached

• Client requests a lease
– May be implicit, distinct from file locking
– Issued lease has file version number for cache coherence

• Server determines if lease can be granted
– Read leases may be granted concurrently
– Write leases are granted exclusively

• If conflict exists, server may send eviction notices
– Evicted write lease must write back
– Evicted read leases must flush/disable caching
– Client acknowledges when completed

34

Using leases

Bounded lease term simplifies recovery

• Before lease expires, client must renew lease

• Client fails while holding a lease?
– Server waits until the lease expires, then unilaterally reclaims
– If client fails during eviction, server waits then reclaims

• Server fails while leases outstanding? On recovery,
– Wait lease period + clock skew before issuing new leases
– Absorb renewal requests and/or writes for evicted leases

Requirements dictate design

36

Case Study: AFS

Andrew File System (CMU 1980s-)
• Scalability was key design goal

– Many servers, 10,000s of users

• Observations about workload
– Reads much more common than writes
– Concurrent writes are rare / writes between users disjoint

• Interfaces in terms of files, not blocks
– Whole-file serving: entire file and directories
– Whole-file caching: clients cache files to local disk

• Large cache and permanent, so persists across reboots

AFS: Consistency
• Consistency: Close-to-open consistency

– No mixed writes, as whole-file caching / whole-file overwrites

– Update visibility: Callbacks to invalidate caches

• What about crashes or partitions?
– Client invalidates cache iff

• Recovering from failure

• Regular liveness check to server (heartbeat) fails.

– Server assumes cache invalidated if callbacks fail +
heartbeat period exceeded

Next lecture topic:
Google File System (GFS)

39

