Time Synchronization and Logical Clocks

CS 240: Computing Systems and Concurrency Lecture 5

Mootaz Elnozahy

Today

1. The need for time synchronization

- 2. "Wall clock time" synchronization
- 3. Logical Time

A distributed edit-compile workflow

2143 < 2144 → make doesn't call compiler

Lack of time synchronization result – a possible object file mismatch

What makes time synchronization hard?

- Quartz oscillator sensitive to temperature, age, vibration, radiation
 - Accuracy ca. one part per million (one second of clock drift over 12 days)
- 2. The internet is:
 - Asynchronous: arbitrary message delays
 - Best-effort: messages don't always arrive

Today

1. The need for time synchronization

2. "Wall clock time" synchronization

Cristian's algorithm, Berkeley algorithm, NTP

3. Logical Time

- Lamport clocks
- Vector clocks

Just use Coordinated Universal Time?

- UTC is broadcast from radio stations on land and satellite (e.g., the Global Positioning System)
 - Computers with receivers can synchronize their clocks with these timing signals
- Signals from land-based stations are accurate to about 0.1–10 milliseconds
- Signals from GPS are accurate to about one microsecond
 - Why can't we put GPS receivers on all our computers?

Synchronization to a time server

- Suppose a server with an accurate clock (e.g., GPSdisciplined crystal oscillator)
 - Could simply issue an RPC to obtain the time:

- But this doesn't account for network latency
 - Message delays will have outdated server's answer

Cristian's algorithm: Outline

- Client sends a request packet, timestamped with its local clock T₁
- 2. Server timestamps its receipt of the request T_2 with its local clock
- 3. Server sends a *response* packet with its local clock T_3 and T_2
- 4. Client locally timestamps its receipt of the server's response T_4

How the client can use these timestamps to synchronize its local clock to the server's local clock?

Time ↓

Cristian's algorithm: Offset sample calculation

Goal: Client sets clock $\leftarrow T_3 + \delta_{\text{resp}}$

- Client samples round trip time $\delta = \delta_{req} + \delta_{resp} = (T_4 T_1) (T_3 T_2)$
- But client knows δ , not δ_{resp}

Assume: $\delta_{\text{req}} \approx \delta_{\text{resp}}$

Client sets clock $\leftarrow T_3 + \frac{1}{2}\delta$

Today

1. The need for time synchronization

2. "Wall clock time" synchronization

Cristian's algorithm, Berkeley algorithm, NTP

- 3. Logical Time
 - Lamport clocks
 - Vector clocks

Berkeley algorithm

- A single time server can fail, blocking timekeeping
- The Berkeley algorithm is a distributed algorithm for timekeeping
 - Assumes all machines have equally-accurate local clocks
 - Obtains average from participating computers and synchronizes clocks to that average

Berkeley algorithm

Master machine: polls L other machines using Cristian's algorithm → { θ_i } (i = 1...L)

Master

Today

1. The need for time synchronization

2. "Wall clock time" synchronization

Cristian's algorithm, Berkeley algorithm, NTP

3. Logical Time

- Lamport clocks
- Vector clocks

The Network Time Protocol (NTP)

- Enables clients to be accurately synchronized to UTC despite message delays
- Provides reliable service
 - Survives lengthy losses of connectivity
 - Communicates over redundant network paths
- Provides an accurate service
 - Unlike the Berkeley algorithm, leverages heterogeneous accuracy in clocks

NTP: System structure

- Servers and time sources are arranged in layers (strata)
 - Stratum 0: High-precision time sources themselves
 - e.g., atomic clocks, shortwave radio time receivers
 - Stratum 1: NTP servers directly connected to Stratum 0
 - Stratum 2: NTP servers that synchronize with Stratum 1
 - Stratum 2 servers are clients of Stratum 1 servers
 - Stratum 3: NTP servers that synchronize with Stratum 2
 - Stratum 3 servers are clients of Stratum 2 servers
- Users' computers synchronize with Stratum 3 servers

NTP operation: Server selection

- Messages between an NTP client and server are exchanged in pairs: request and response
 - Use Cristian's algorithm
- For *i*th message exchange with a particular server, calculate:
 - 1. Clock offset θ_i from client to server
 - 2. Round trip time δ_i between client and server
- Over last eight exchanges with server k, the client computes its dispersion $\sigma_k = \max_i \delta_i \min_i \delta_i$
 - Client uses the server with minimum dispersion

NTP operation: Clock offset calculation

- Client tracks minimum round trip time and associated offset over the last eight message exchanges (δ_0, θ_0)
 - $-\theta_0$ is the best estimate of offset: client adjusts its clock by θ_0 to synchronize to server

NTP operation: How to change time

- Can't just change time: Don't want time to run backwards
 - Recall the make example
- Instead, change the update rate for the clock
 - Changes time in a more gradual fashion
 - Prevents inconsistent local timestamps

Clock synchronization: Take-away points

- Clocks on different systems will always behave differently
 - Disagreement between machines can result in undesirable behavior
- NTP, Berkeley clock synchronization
 - Rely on timestamps to estimate network delays
 - 100s μ s-ms accuracy
 - Clocks never exactly synchronized
- Often inadequate for distributed systems
 - Often need to reason about the order of events
 - Might need precision on the order of ns

Today

- 1. The need for time synchronization
- 2. "Wall clock time" synchronization
 - Cristian's algorithm, Berkeley algorithm, NTP
- 3. Logical Time
 - Lamport clocks
 - Vector clocks

Motivation: Multi-site database replication

- A New York-based bank wants to make its transaction ledger database resilient to whole-site failures
- Replicate the database, keep one copy in sf, one in nyc

The consequences of concurrent updates

- Replicate the database, keep one copy in sf, one in nyc
 - Client sends query to the nearest copy
 - Client sends update to both copies

Idea: Logical clocks

- Landmark 1978 paper by Leslie Lamport
- Insight: only the events themselves matter

Idea: Disregard the precise clock time Instead, capture just a "happens before" relationship between a pair of events

- Consider three processes: P1, P2, and P3
- Notation: Event a happens before event b (a → b)

1. Can observe event order at a single process

1. If same process and a occurs before b, then $a \rightarrow b$

- 1. If same process and a occurs before b, then $a \rightarrow b$
- 2. Can observe ordering when processes communicate

- 1. If same process and a occurs before b, then $a \rightarrow b$
- 2. If **c** is a message receipt of **b**, then $\mathbf{b} \rightarrow \mathbf{c}$

- 1. If same process and a occurs before b, then $a \rightarrow b$
- 2. If **c** is a message receipt of **b**, then $\mathbf{b} \rightarrow \mathbf{c}$
- 3. Can observe ordering transitively

- 1. If same process and a occurs before b, then $a \rightarrow b$
- 2. If **c** is a message receipt of **b**, then $\mathbf{b} \rightarrow \mathbf{c}$
- 3. If $\mathbf{a} \rightarrow \mathbf{b}$ and $\mathbf{b} \rightarrow \mathbf{c}$, then $\mathbf{a} \rightarrow \mathbf{c}$

Concurrent events

- Not all events are related by →
- a, d not related by → so concurrent, written as a || d

Lamport clocks: Objective

We seek a clock time C(a) for every event a

Plan: Tag events with clock times; use clock times to make distributed system correct

• Clock condition: If $a \rightarrow b$, then C(a) < C(b)

- Each process P_i maintains a local clock C_i
- 1. Before executing an event, $C_i \leftarrow C_i + 1$

- 1. Before executing an event \mathbf{a} , $C_i \leftarrow C_i + 1$:
 - Set event time $C(\mathbf{a}) \leftarrow C_i$

- 1. Before executing an event **b**, $C_i \leftarrow C_i + 1$:
 - Set event time $C(\mathbf{b}) \leftarrow C_i$

- 1. Before executing an event **b**, $C_i \leftarrow C_i + 1$
- 2. Send the local clock in the message m

The Lamport Clock algorithm

- 3. On process P_j receiving a message m:
 - Set C_j and receive event time $C(\mathbf{c})$ ←1 + max{ C_j , $C(\mathbf{m})$ }

Ordering all events

- Break ties by appending the process number to each event:
 - 1. Process P_i timestamps event e with $C_i(e)$.i
 - 2. $C(\mathbf{a}).i < C(\mathbf{b}).j$ when:
 - C(a) < C(b), or C(a) = C(b) and i < j

- Now, for any two events \mathbf{a} and \mathbf{b} , $C(\mathbf{a}) < C(\mathbf{b})$ or $C(\mathbf{b}) < C(\mathbf{a})$
 - This is called a total ordering of events

Making concurrent updates consistent

We reached an inconsistent state

Could we design a system that uses Lamport Clock total order to make multi-site updates consistent?

Totally-Ordered Multicast

- Client sends update to one replica

 Lamport timestamp C(x)
- Key idea: Place events into a local queue
 - Sorted by increasing C(x)

Goal: All sites apply the updates in (the same) Lamport clock order

Totally-Ordered Multicast (Almost correct)

- 1. On **receiving** an event from **client**, broadcast to others (including yourself)
- 2. On receiving an event from replica:
 - a) Add it to your local queue
 - b) Broadcast an acknowledgement message to every process (including yourself)
- 3. On receiving an acknowledgement:
 - Mark corresponding event acknowledged in your queue
- Remove and process events <u>everyone</u> has ack'ed from <u>head</u> of queue

Totally-Ordered Multicast (Almost correct)

- P1 queues \$, P2 queues %
- P1 queues and ack's %
 - P1 marks % fully ack'ed
- P2 marks % fully ack'ed

P2 processes %

Totally-Ordered Multicast (Correct version)

- 1. On **receiving** an event from **client**, broadcast to others (including yourself)
- 2. On receiving or processing an event:
 - a) Add it to your local queue
 - b) Broadcast an *acknowledgement message* to every process (including yourself) only from head of queue
- 3. When you receive an acknowledgement:
 - Mark corresponding event acknowledged in your queue
- Remove and process events <u>everyone</u> has ack'ed from <u>head</u> of queue

Totally-Ordered Multicast (Correct version)

So, are we done?

- Does totally-ordered multicast solve the problem of multi-site replication in general?
- Not by a long shot!
- 1. Our protocol assumed:
 - No node failures
 - No message loss
 - No message corruption
- 2. All to all communication does not scale
- 3. Waits forever for message delays (performance?)

Take-away points: Lamport clocks

Can totally-order events in a distributed system: that's useful!

- But: while by construction, $\mathbf{a} \rightarrow \mathbf{b}$ implies $C(\mathbf{a}) < C(\mathbf{b})$,
 - The converse is not necessarily true:
 - $C(\mathbf{a}) < C(\mathbf{b})$ does not imply $\mathbf{a} \rightarrow \mathbf{b}$ (possibly, $\mathbf{a} \parallel \mathbf{b}$)

Can't use Lamport clock timestamps to infer causal relationships between events

Today

- 1. The need for time synchronization
- 2. "Wall clock time" synchronization
 - Cristian's algorithm, Berkeley algorithm, NTP

3. Logical Time

- Lamport clocks
- Vector clocks

Vector clock (VC)

- Label each event **e** with a vector $V(\mathbf{e}) = [c_1, c_2, ..., c_n]$
 - $-c_i$ is a count of events in process i that causally precede **e**
- Initially, all vectors are [0, 0, ..., 0]
- Two update rules:
- 1. For each **local event** on process i, increment local entry c_i
- 2. If process *j* receives message with vector $[d_1, d_2, ..., d_n]$:
 - Set each local entry $c_k = \max\{c_k, d_k\}$
 - Increment local entry c_i

Vector clock: Example

All counters start at [0, 0, 0]

Applying local update rule

- Applying message rule
 - Local vector clock
 piggybacks on interprocess messages

Physical time ↓

Vector clocks can establish causality

- Rule for comparing vector clocks:
 - $-V(\mathbf{a}) = V(\mathbf{b})$ when $\mathbf{a}_k = \mathbf{b}_k$ for all k
 - $-V(\mathbf{a}) < V(\mathbf{b})$ when $\mathbf{a}_k \le \mathbf{b}_k$ for all k and $V(\mathbf{a}) \ne V(\mathbf{b})$
- Concurrency: $a \parallel b$ if $a_i < b_i$ and $a_j > b_j$, some i, j
- V(a) < V(z) when there is a chain of events linked by → between a and z

Two events a, z

Lamport clocks: C(a) < C(z)

Conclusion: None

Vector clocks: V(a) < V(z)

Conclusion: $a \rightarrow ... \rightarrow z$

Vector clock timestamps tell us about causal event relationships

VC application: Causally-ordered bulletin board system

- Distributed bulletin board application
 - Each post → multicast of the post to all other users

 Want: No user to see a reply before the corresponding original message post

- Deliver message only after all messages that causally precede it have been delivered
 - Otherwise, the user would see a reply to a message they could not find

VC application: Causally-ordered bulletin board system

Physical time →

User 0 posts, user 1 replies to 0's post; user 2 observes

Wednesday Topic: Lab 1 – Virtualization, sockets, RPCs

Why global timing?

- Suppose there were an infinitely-precise and globally consistent time standard
- That would be very handy. For example:
- 1. Who got last seat on airplane?
- **2. Mobile cloud gaming:** Which was first, A shoots B or vice-versa?

3. Does this file need to be recompiled?

Totally-Ordered Multicast (Attempt #1)

- P1 queues \$, P2 queues %
- P1 queues and ack's %
 - P1 marks % fully ack'ed
- P2 marks % fully ack'ed
 - P2 processes %
- P2 queues and ack's \$
 - P2 processes \$
- P1 marks \$ fully ack'ed
 - P1 processes \$, then %

Totally-Ordered Multicast (Correct version)

- P1 queues \$, P2 queues %
- P1 queues %
- P2 queues and ack's \$
- P2 marks \$ fully ack'ed
 - P2 processes \$
- P1 marks \$ fully ack'ed
 - P1 processes \$
 - P1 ack's %
- P1 marks % fully ack'ed
 - P1 processes %
- P2 marks % fully ack'ed
 - P2 processes %

Time standards

- Universal Time (UT1)
 - In concept, based on astronomical observation of the sun at 0° longitude
 - Known as "Greenwich Mean Time"
- International Atomic Time (TAI)
 - Beginning of TAI is midnight on January 1, 1958
 - Each second is 9,192,631,770 cycles of radiation emitted by a Cesium atom
 - Has diverged from UT1 due to slowing of earth's rotation
- Coordinated Universal Time (UTC)
 - TAI + leap seconds, to be within 0.9 seconds of UT1
 - Currently TAI UTC = 36

VC application: Order processing

- Suppose we are running a distributed order processing system
- Each process = a different user
- Each event = an order
- A user has seen all orders with V(order) < the user's current vector