
Global State and
Gossip

CS 240: Computing Systems and Concurrency
Lecture 6

Marco Canini
Credits: Indranil Gupta developed much of the original material.

Today
1. Global snapshot of a distributed system

2. Chandy-Lamport’s algorithm

3. Gossip

2

• Let’s think of this as a picture of all servers and
their states comprising a distributed system

• How do you calculate a “global snapshot” in a
distributed system?

• What does a “global snapshot” even mean?

• Why is the ability to obtain a “global snapshot”
important?

Distributed snapshot

3

• Checkpointing
– can restart distributed system on failure

• Gargabe collection of objects
– objects at servers that don’t have any other objects

(at any servers) with references to them
• Deadlock detection

– useful in database transaction systems
• Termination of computation

– useful in batch computing systems
• Debugging

– useful to inspect the global state of the system

Some uses of global system snapshot

4

• Global Snapshot = Global State =
Individual state of each process in the distributed
system
+
Individual state of each communication channel in the
distributed system

• Capture the instantaneous state of each process

• And the instantaneous state of each communication
channel, i.e., messages in transit on the channels

What’s a global snapshot?

5

• Synchronize clocks of all processes
• Ask all processes to record their states at known time t
• Problems?

– Time synchronization always has error
• Your bank might inform you, “We lost the state of

our distributed cluster due to a 1 ms clock skew in
our snapshot algorithm.”

– Also, does not record the state of messages in the
channels

• Again: synchronization not required – causality is
enough!

A strawman solution

6

Example

Pi

Pj

Cij

Cji

7

Pi

Pj

Cij

Cji

[$1000,
100 iPhones]

[$600,
50 Androids]

[empty]
[empty]

[Global Snapshot 0]

8

Pi

Pj

Cij

Cji

[$701,
100 iPhones]

[$600,
50 Androids]

[empty]
[$299, Order Android]

[Global Snapshot 1]

9

Pi

Pj

Cij

Cji

[$701,
100 iPhones]

[$101,
50 Androids]

[$499, Order
iPhone]

[Global Snapshot 2]

[$299, Order Android]

10

Pi

Pj

Cij

Cji

[$1200, 1 iPhone order from Pj,
100 iPhones]

[$101,
50 Androids]

[empty]

[Global Snapshot 3]

[$299, Order Android]

11

[
($299, Order Android),

(1 iPhone)
]

Pi

Pj

Cij

Cji

[$1200,
99 iPhones]

[$101,
50 Androids]

[Global Snapshot 4]

[empty]

12

[
(1 iPhone)

]

Pi

Pj

Cij

Cji

[$1200,
99 iPhones]

[$400, 1 Android order from Pi,
50 Androids]

[Global Snapshot 5]

[empty]

13

[empty]

Pi

Pj

Cij

Cji

[$1200,
99 iPhones]

[$400, 1 Android order from Pi,
50 Androids, 1 iPhone]

[Global Snapshot 6]

[empty]

… and so on …

14

• Whenever an event happens anywhere in
the system, the global state changes
– Process receives message
– Process sends message
– Process takes a step

• State to state movement obeys causality
– Next: Causal algorithm for Global Snapshot

calculation

Moving from State to State

15

Today
1. Global snapshot of a distributed system

2. Chandy-Lamport’s algorithm

3. Gossip

16

• Problem: Record a global snapshot (state for
each process, and state for each channel)

• System Model:
– N processes in the system
– There are two uni-directional communication channels

between each ordered process pair Pj à Pi and Pi à Pj
– Communication channels are FIFO-ordered

• First in First out
– No failure
– All messages arrive intact, and are not duplicated

• Other papers later relaxed some of these
assumptions

System Model

17

• Snapshot should not interfere with normal
application actions, and it should not require
application to stop sending messages

• Each process is able to record its own state
– Process state: Application-defined state or, in the worst case:
– its heap, registers, program counter, code, etc. (essentially

the coredump)
• Global state is collected in a distributed manner
• Any process may initiate the snapshot

– We’ll assume just one snapshot run for now

Requirements

18

• First: Initiator Pi records its own state
• Initiator process creates special messages called

“Marker” messages
– Not an application message, does not interfere with

application messages

• for j=1 to N except i
• Pi sends out a Marker message on outgoing

channel Cij
• (N-1) channels

• Starts recording the incoming messages on each of the
incoming channels at Pi: Cji (for j=1 to N except i)

Chandy-Lamport Global Snapshot
Algorithm

19

Whenever a process Pi receives a Marker message
on an incoming channel Cki
• if (this is the first Marker Pi is seeing)

– Pi records its own state first
– Marks the state of channel Cki as “empty”
– for j=1 to N except i

• Pi sends out a Marker message on outgoing channel Cij
– Starts recording the incoming messages on each of the

incoming channels at Pi: Cji (for j=1 to N except i and k)
• else // already seen a Marker message

– Mark the state of channel Cki as all the messages that have
arrived on it since recording was turned on for Cki

Chandy-Lamport Global Snapshot
Algorithm (2)

20

The algorithm terminates when
• All processes have received a Marker

– To record their own state
• All processes have received a Marker on all the (N-1)

incoming channels at each
– To record the state of all channels

Then, (if needed), a central server collects all these
partial state pieces to obtain the full global snapshot

Chandy-Lamport Global Snapshot
Algorithm (3)

21

P2

Time
P1

P3

A B C D E

E F G

H I J

Message
Instruction or Step

Example

22

P1 is Initiator:
• Record local state S1,
• Send out markers
• Turn on recording on channels C21, C31

P2

Time
P1

P3

A B C D E

E F G

H I J

23

S1, Record C21, C31

• First Marker!
• Record own state as S3
• Mark C13 state as empty
• Turn on recording on other incoming C23
• Send out Markers

P2

Time
P1

P3

A B C D E

E F G

H I J

24

P2

Time
P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• S3
• C13 = < >
• Record C23

25

Duplicate Marker!
State of channel C31 = < >

P2

Time
P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• S3
• C13 = < >
• Record C23

26

P2

Time
P1

P3

C31 = < >

• First Marker!
• Record own state as S2
• Mark C32 state as empty
• Turn on recording on C12
• Send out Markers

A B C D E

E F G

H I J

• S3
• C13 = < >
• Record C23

S1, Record C21, C31

27

P2

Time
P1

P3
• S2
• C32 = < >
• Record C12

A B C D E

E F G

H I J

• S3
• C13 = < >
• Record C23

C31 = < >S1, Record C21, C31

28

P2

Time
P1

P3
• Duplicate!
• C12 = < >

A B C D E

E F G

H I J

C31 = < >S1, Record C21, C31

• S2
• C32 = < >
• Record C12

• S3
• C13 = < >
• Record C23

29

P2

Time
P1

P3
C12 = < >

• Duplicate!
• C21 = <message GàD >

A B C D E

E F G

H I J

C31 = < >S1, Record C21, C31

• S2
• C32 = < >
• Record C12

• S3
• C13 = < >
• Record C23

30

P2

Time
P1

P3

• Duplicate!
• C23 = < >

A B C D E

E F G

H I J

C12 = < >

• C21 = <message GàD >

C31 = < >S1, Record C21, C31

• S2
• C32 = < >
• Record C12

• S3
• C13 = < >
• Record C23

31

P2

Time
P1

P3
• S3
• C13 = < >

• S2
• C32 = < >

• C23 = < >

A B C D E

E F G

H I J

Algorithm has terminated

S1

C21 = <message GàD >
C31 = < >

C12 = < >

32

P2

Time
P1

P3

S1

S3 C13 = < >

C31 = < >

S2 C32 = < >
C12 = < >

C21 = <message GàD >

C23 = < >

A B C D E

E F G

H I J

Collect the global snapshot pieces

33

• Global Snapshot calculated by Chandy-Lamport
algorithm is causally correct
– What?

Next

34

• Cut = time frontier at each process and at
each channel

• Events at the process/channel that happen
before the cut are “in the cut”
– And happening after the cut are “out of the cut”

Cuts

35

Consistent Cut: a cut that obeys causality
• Cut C is a consistent cut if and only if:

for (each pair of events e, f in the system)
– Such that event e is in the cut C, and if f à e

(f happens-before e)
• Then: Event f is also in the cut C

Consistent Cuts

36

Example

P2

Time
P1

P3

Consistent Cut Inconsistent Cut
G à D, but only D is in cut

A B C D E

E F G

H I J

37

P2

Time
P1

P3

Our Global Snapshot Example …

A B C D E

E F G

H I J

• S3
• C13 = < >

• S2
• C32 = < >

• C23 = < >

S1

C21 = <message GàD >
C31 = < >

C12 = < >

38

… is causally correct

P2

Time
P1

P3

Consistent Cut captured by our
Global Snapshot Example

A B C D E

E F G

H I J

• S3
• C13 = < >

• S2
• C32 = < >

• C23 = < >

S1

C21 = <message GàD >
C31 = < >

C12 = < >

39

• Any run of the Chandy-Lamport Global
Snapshot algorithm creates a consistent cut

In fact…

40

Let’s quickly look at the proof
Let ei and ej be events occurring at Pi and Pj,
respectively such that

– ei à ej (ei happens before ej)
The snapshot algorithm ensures that

if ej is in the cut then ei is also in the cut
That is: if ej à <Pj records its state>, then

– it must be true that ei à <Pi records its state>

Chandy-Lamport Global Snapshot
algorithm creates a consistent cut

41

• if ej à <Pj records its state>, then it must be
true that ei à <Pi records its state>
• By contradiction, suppose ej à <Pj records its

state> and <Pi records its state> à ei
• Consider the path of app messages (through other

processes) that go from ei à ej
• Due to FIFO ordering, markers on each link in

above path will precede regular app messages
• Thus, since <Pi records its state> à ei , it must be

true that Pj received a marker before ej
• Thus ej is not in the cut => contradiction

Chandy-Lamport Global Snapshot
algorithm creates a consistent cut

42

• The ability to calculate global snapshots in a
distributed system is very important

• But don’t want to interrupt running distributed
application

• Chandy-Lamport algorithm calculates global
snapshot

• Obeys causality (creates a consistent cut)

Summary

43

• Chandy & Lamport,1985
– algorithm to select a consistent cut
– any process may initiate a snapshot at any time
– processes can continue normal execution

• send and receive messages
– assumes:

• no failures of processes & channels
• strong connectivity

–at least one path between each process pair
• unidirectional, FIFO channels
• reliable delivery of messages

Distributed snapshot algorithm summary

44

Today
1. Global snapshot of a distributed system

2. Chandy-Lamport’s algorithm

3. Gossip

45

Multicast problem

46

Fault-tolerance and Scalability

Needs:
1. Reliability (Atomicity)

• 100% receipt
2. Speed

47

Centralized

48

Tree-Based

49

• Build a spanning tree among the processes of the multicast
group

• Use spanning tree to disseminate multicasts
• Use either acknowledgments (ACKs) or negative

acknowledgements (NAKs) to repair multicasts not received
• SRM (Scalable Reliable Multicast)

– Uses NAKs
– But adds random delays, and uses exponential backoff to

avoid NAK storms
• RMTP (Reliable Multicast Transport Protocol)

– Uses ACKs
– But ACKs only sent to designated receivers, which then re-

transmit missing multicasts
• These protocols still cause an O(N) ACK/NAK overhead

[Birman99]

Tree-based Multicast Protocols

50

A Third Approach

51

A Third Approach

52

A Third Approach

53

A Third Approach

54

“Epidemic” Multicast (or “Gossip”)

55

• So that was “Push” gossip
– Once you have a multicast message, you start

gossiping about it
– Multiple messages? Gossip a random subset of

them, or recently-received ones, or higher priority
ones

• There’s also “Pull” gossip
– Periodically poll a few randomly selected processes

for new multicast messages that you haven’t
received

– Get those messages
• Hybrid variant: Push-Pull

– As the name suggests

Push vs. Pull

56

Claim that the simple Push protocol

• Is lightweight in large groups
• Spreads a multicast quickly
• Is highly fault-tolerant

Properties

57

From old mathematical branch of Epidemiology [Bailey75]
• Population of (n+1) individuals mixing homogeneously
• Contact rate between any individual pair is
• At any time, each individual is either uninfected

(numbering x) or infected (numbering y)
• Then,

and at all times
• Infected–uninfected contact turns latter infected, and it

stays infected

Analysis

b

1, 00 == ynx
1+=+ nyx

58

with solution:

Analysis (contd.)

• Continuous time process
• Then

xy
dt
dx b-=

tntn ne
ny

en
nnx)1()1(1

)1(,)1(
+-+ +

+
=

+
+

= bb

(can you derive it?)

(why?)

59

Epidemic Multicast

60

Epidemic Multicast Analysis

n
b

=b

2

1)1(--+» cbn
ny

(correct? can you derive it?)

Substituting, at time t=clog(n), the number of infected is

(why?)

61

Analysis (contd.)

• Set c, b to be small numbers independent of n
• Within clog(n) rounds, [low latency]

• all but number of nodes receive the multicast

[reliability]

• each node has transmitted no more than cblog(n)
gossip messages [lightweight]

2

1
-cbn

62

• log(N) is not constant in theory
• But pragmatically, it is a very slowly growing

number
• Base 2

– log(1000) ~ 10
– log(1M) ~ 20
– log (1B) ~ 30
– log(all IPv4 address) = 32

Why is log(N) low?

63

• Packet loss
– 50% packet loss: analyze with b replaced

with b/2
– To achieve same reliability as 0% packet loss,

takes twice as many rounds
• Node failure

– 50% of nodes fail: analyze with n replaced
with n/2 and b replaced with b/2

– Same as above

Fault-tolerance

64

• With failures, is it possible that the epidemic might die
out quickly?

• Possible, but improbable:
– Once a few nodes are infected, with high probability, the

epidemic will not die out
– So the analysis we saw in the previous slides is actually

behavior with high probability
[Galey and Dani 98]

• Think: why do rumors spread so fast? why do
infectious diseases cascade quickly into epidemics?
why does a virus or worm spread rapidly?

Fault-tolerance

65

• In all forms of gossip, it takes O(log(N)) rounds before
about N/2 processes get the gossip
– Why? Because that’s the fastest you can spread a

message – a spanning tree with fanout (degree) of
constant degree has O(log(N)) total nodes

• Thereafter, pull gossip is faster than push gossip
• After the ith, round let pi be the fraction of non-infected

processes. Let each round have k pulls. Then

• This is super-exponential
• Second half of pull gossip finishes in time O(log(log(N))

Pull Gossip: Analysis

() 1

1

+

+
=

k

ii pp

66

• Multicast is an important problem
• Tree-based multicast protocols
• When concerned about scale and fault-tolerance, gossip is

an attractive solution
• Also known as epidemics
• Fast, reliable, fault-tolerant, scalable, topology-aware

Summary

67

Next Topic:
Primary-backup replication

(pre-reading: VM replication)

68

