Global State and
Gossip

alllauc Ellal) deals

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 6

Marco Canini

Credits: Indranil Gupta developed much of the original material.

Today

1. Global snapshot of a distributed system
2. Chandy-Lamport’s algorithm

3. Gossip

Distributed snapshot

 Let’s think of this as a picture of all servers and
their states comprising a distributed system

* How do you calculate a “global snapshot” in a
distributed system?

* What does a “global snapshot” even mean?

* Why is the ability to obtain a “global snapshot”
important?

Some uses of global system snapshot

Checkpointing
— can restart distributed system on failure
Gargabe collection of objects

— objects at servers that don't have any other objects
(at any servers) with references to them

Deadlock detection

— useful in database transaction systems
Termination of computation

— useful in batch computing systems
Debugging

— useful to inspect the global state of the system

What'’s a global shapshot?

* Global Snapshot = Global State =
Individual state of each process in the distributed
system
+

Individual state of each communication channel in the
distributed system

« Capture the instantaneous state of each process

 And the instantaneous s;‘ate of e_ach communication
channel, i.e., messages in transit on the channels

A strawman solution

« Synchronize clocks of all processes
« Ask all processes to record their states at known time ¢
* Problems?

— Time synchronization always has error

* Your bank might inform you, “We lost the state of
our distributed cluster due to a 1 ms clock skew In
our snapshot algorithm.”

— Also, does not record the state of messages in the
channels

* Again: synchronization not required — causality is
enough!

Example

Cji

Pi
Cy

[empty]

[$1000,
100 iPhones]

[empty]

| Gji

(Pj) 8600,

50 Androids]

[Global Snapshot 0]

Pi
Cyj

[$299, Order Android |

[$701,
100 iPhones]

[empty]

| Gji

(Pj) 5600,

50 Androids]

[Global Snapshot 1]

(pi) 8701,

Cij — 1100 iPhones]

[$499, Order
[$299, Order Android | iPhone]

| Gji

(pj) [s101,

50 Androids]
[Global Snapshot 2]

10

@ [$1200, 1 iPhone order from Pj,

Cij 7 100 iPhones]

| [empty]
[$299, Order Android |

| Gji

(i) Is101,

50 Androids]
[Global Snapshot 3]

11

(pi)
cij ||
|
($299, Order Android),
(1 iPhone)
p—

]

(Bj)

[$1200,
99 iPhones]

[empty]
Cji

[$101,
50 Androids]

[Global Snapshot 4]

12

(pi) [$1200,

Cij —799 iPhones]
[lempty]
(1 iPhone)
! ,— Cji
®[$400, 1 Android order from Pi,
50 Androids]

[Global Snapshot 5]

(pi) 81200,

Cij 7199 iPhones]

[empty]
[empty]
... and so on ...

,— Cji
Q’])[MOO, 1 Android order from Pi,
50 Androids, 1 iPhone]

[Global Snapshot 6]

Moving from State to State

Whenever an event happens anywhere in
the system, the global state changes

—Process receives message
—Process sends message
—Process takes a step

State to state movement obeys causality

—Next: Causal algorithm for Global Snapshot
calculation

Today

1. Global snapshot of a distributed system
2. Chandy-Lamport’s algorithm

3. Gossip

16

System Model

Problem: Record a global snapshot (state for
each process, and state for each channel)

— N processes in the system

— There are two uni-directional communication channels
between each ordered process pair P/ =2 Piand Pi 2 Pj

— Communication channels are FIFO-ordered
* First in First out
— No failure
— All messages arrive intact, and are not duplicated

» Other papers later relaxed some of these
assumptions

Reqguirements

Snapshot should not interfere with normal
application actions, and it should not require
application to stop sending messages

Each process is able to record its own state

— Process state: Application-defined state or, in the worst case:

— its heap, registers, program counter, code, etc. (essentially
the coredump)

Global state is collected in a distributed manner

Any process may initiate the snapshot
— We'll assume just one snapshot run for now

Chandy-Lamport Global Snapshot
Algorithm

* First: Initiator Pi records its own state

. Inltlator process creates special messages called
” messages

— Not an application message, does not interfere with
application messages

« for j=1to N excepti

* P/ sends out a Marker message on outgoing
channel C;

* (N-1) channels

the incoming messages on each of the
incoming channels at Pi: C; (for j=1 to N except /)

Chandy-Lamport Global Snapshot
Algorithm (2)

Whenever a process Pi receives a Marker message
on an incoming channel C;

* if (this is the first Marker Pi is seeing)
— Pirecords its own state first

— for j=1 to N except i

* Pisends out a Marker message on outgoing channel C;

the incoming messages on each of the
incoming channels at Pi: C; (for j=1 to N except j and k)

 else /] already seen a Marker message

— Mark the state of channel C,; as all the messages that have
arrived on it Cyi

Chandy-Lamport Global Snapshot
Algorithm (3)

The algorithm terminates when
* All processes have received a Marker
— To record their own state

 All processes have received a Marker on all the (N-7)
iIncoming channels at each

— To record the state of all channels

Then, (if needed), a central server collects all these
partial state pieces to obtain the full global snapshot

Example

D E
Pl A >
Time
P2 G >
P3 ®]

® [Instruction or Step
—> Message

Pl

P2

P3

P1 is Initiator:

 Record local state S1,

 Send out markers

* Turn on recording on channels C,,, C,,

C D E

\R\ \ Time
E G R

N

23

S1, Record C,,, Cgyy
D E

o, =
AN

First I\/Iarker'
* Record own state as S3
« Mark C,;state as empty
* Turn on recording on other incoming C,,
* Send out Markers

P3

24

P1

P2

P3

2

B

S1, Record C,,, Cgy
D E

, e .
X\E\ / G/ \Time,

AVERN

. 83
* Ci3=<>
* Record C,;

25

P3

Duplicate Marker!

S1, Record C21, State of Channel Cy=<>
\ \ / / \ Time
/ \ .)
. 'S3

* Cpp=<>
* Record C,;

26

P3

S1, Record Cyy, 634 /,.3 -<Z

IR

. /\ \

First Marker!

Record own state as S2

Mark C;, state as empty

Turn on recording on C,,
Send out Markers

‘ C13= <=
* Record C,;

27

P3

* Cp3=<> Cp=<>
* Record C,;* Record C,,

28

Pl
P2

P3

S1,Record Cyy, 65y C3/=<>

/

é B
A\

Time

N\ AL

D E

\
! \
' \
' \
H \
\
H \
! \
' \
' \
' \
| \
\
! \
! \
' \
' \
' \
| \
\
! \
! \
' \
1 \
' \
@ . >
\
\
\
\
\

. 33 e S2 * Duplicatel!
+ C;=<> o Cg=<>" Cp=<>

* Record C,;~—ReeerdG,,

29

Pl

P2

P3

* Duplicate!
c C, = <message G->D>

—<> /
S1, Reee%d%%—Gt% Cs;

PN

/.\//\ -

* Ci3=<> ¢ Cgp=<>

* Record C,;~—ReeerdG,,

30

« C,,=<message G->D >

S1, Reee%d%%—Gt% Cy=<>

P1 '
NS

P2 / \ // \

P3

| =<>
° C13=<> ° C32=:/<>

~—ReeordG,; ° Recq’rd C,,

« Duplicate!
¢ C23= <> 31

12

Algorithm has terminated

C2 = <message G->D >

/
/
/
/
— g
/
/
/
/

T
VSN

: 83 ¢ S2 ,= <>
* Cp=<> = C32‘/<>

. C23=<>

32

Collect the global snapshot pieces

021 = <message G->D >

—<>

T
NEVAVEEANY

S3C,;=<> S2 C32_<>
12

Cp=<>

=< >

33

Next

* Global Snapshot calculated by Chandy-Lamport
algorithm is causally correct

— What?

Cuts

Cut = time frontier at each process and at
each channel

Events at the process/channel that happen
before the cut are “in the cut”

— And happening after the cut are “out of the cut’

Consistent Cuts

. a cut that obeys causality
Cut C is a consistent cut if and only if:
for (each pair of events e, f in the system)

—Such thateventeisinthecut C, and iff 2 e
(f happens-before e)

 Then: Event fis also in the cut C

Example

B "D E
P1 2 | S , R
I
,’ / Time
! o T
P2 E ,/l F : G >
/ 1
/ |
. i
\
P3 .l I‘ \‘] R
| \
Consistent Cut Inconsistent Cut

G =2 D, butonly D is in cut

37

Our Global Snapshot Example ...

C21 = <message G->D>

S1 =<2
B
P1 A
\ / \ Time
P2 E F
e S3 e S2 | C,,=<>

38

... IS causally correct

C,,= <message G>D >

/ S1 (;31 =<=
Pl é B S Q D / E S
~~~~~ " Time
A S
E F G \
P2 — 5
v
»” ‘0
” ¢ ‘ .
P3 P = -I‘ — J >
S0 S3 « S2 | Cp,=<>

/

Consistent Cut captured by our ¢ Cy=<>
Global Snapshot Example

39



In fact...

* Any run of the Chandy-Lamport Global
Snapshot algorithm creates a consistent cut

40



Chandy-Lamport Global Snapshot
algorithm creates a consistent cut

Let’s quickly look at the proof

Let e; and g, be events occurring at P/ and P,
respectively such that

—€, 2 ¢ (e happens before e))
The snapshot algorithm ensures that

That is: if P/ , then

— It must be true that Pi



Chandy-Lamport Global Snapshot
algorithm creates a consistent cut

o If Pj , then it must be
true that Pi

* By contradiction, suppose e; - <Pjrecords its
state> and <Pi records its state> 2 e,

» Consider the path of app messages (through other
processes) that go from g, 2 ¢,

* Due to FIFO ordering, markers on each link in
above path will precede regular app messages

* Thus, since <Pirecords its state> - ¢, , it must be
true that Pjreceived a marker before ¢

* Thus €; IS not in the cut => contradiction



Summary

* The abillity to calculate global snapshots in a
distributed system is very important

« But don't want to interrupt running distributed
application

» Chandy-Lamport algorithm calculates global
shapshot

* Obeys causality (creates a consistent cut)



Distributed snapshot algorithm summary

« Chandy & Lamport,1985
— algorithm to select a consistent cut
— any process may initiate a snapshot at any time
— processes can continue normal execution
* send and receive messages
— assumes:
* no failures of processes & channels
* strong connectivity
—at least one path between each process pair
* unidirectional, FIFO channels
* reliable delivery of messages



Today

1. Global snapshot of a distributed system
2. Chandy-Lamport’s algorithm

3. Gossip

45



Multicast problem

Node with a piece of information
to be communicated to everyone

\

Distributed Group
>of “Nodes” =

Processes at
Internet-based host

46



Fault-tolerance and Scalability

MULTICAST SENDER

* Nodes may crash

.
:::::
. * ‘e
‘e
.
.

e Ax * Packets may be dropped
. * 1000’s of nodes

: Needs:

E 1. Reliability (Atomicity)
* 100% receipt

2. Speed

47



Centralized

.
.
. *e
. Ce,
®
®e

.O
.
L
L]
..
L] .
.
L
L]
.
..
L

d

'l
o ®
rl
Yl
L
......
e
e ®
e
e ®

..
L
..
.

* Simplest implementation

® Problems?

48



Tree-Based

UDP/TCP PACKETS

O

O

¢ e.g., IPmulticast, SRM
RlaTP, TRAM, TMTP

* Tree setup and maintenance

¢ Problems?

O

49



Tree-based Multicast Protocols

Build a spanning tree among the processes of the multicast

group
Use spanning tree to disseminate multicasts

Use either acknowledgments (ACKs) or negative _
acknowledgements (NAKSs) to repair multicasts not received

SRM (Scalable Reliable Multicast)
— Uses NAKs

— But adds random delays, and uses exponential backoff to
avoid NAK storms

RMTP (Reliable Multicast Transport Protocol)
— Uses ACKs

— But ACKs only sent to designated receivers, which then re-
transmit missing multicasts

These protocols still cause an O(N) ACK/NAK overhead
[Birman99]



A Third Approach

MULTICAST SENDER
O

O

@

51



A Third Approach

PERIODICALLY, TRANSMIT TO
b RANDOM TARGETS

— GOSSIP MESSAGES (UDP)

O

52



A Third Approach

OTHER NODES DO SAME

AFTER RECEIVING MULTICAST

— GOSSIP MESSAGES (UDP)

53



A Third Approach

OTHER NODES DO SAME

AFTER RECEIVING MULTICAST

— GOSSIP MESSAGES (UDP)

54



“Epidemic” Multicast (or “Gossip”’)

@ INFECTED

PROTOCOL ROUNDS (LOCAL CLOCK)
b RANDOM TARGETS PER ROUND

/

GOSSIP MESSAGE (UDP) ®

/ O UNINFECTED

O




Push vs. Pull

So that was “Push” gossip

— Once you have a multicast message, you start
gossiping about it

— Multiple messages? Gossip a random subset of

them, or recently-received ones, or higher priority
ones

There’s also "Pull” gossip

— Periodically poll a few randomly selected processes
for new multicast messages that you haven't
received

— Get those messages
Hybrid variant: Push-Pull
— As the name suggests



Properties
Claim that the simple Push protocol
* Is lightweight in large groups

» Spreads a multicast quickly
* |s highly fault-tolerant



Analysis

From old mathematical branch of Epidemiology [Bailey75]
* Population of (n+7) individuals mixing homogeneously
« Contact rate between any individual pair is £
« At any time, each individual is either uninfected
(numbering x) or infected (numbering y)
« Then, x,=n,y,=1
and at all times x+y=n+1

* |nfected—uninfected contact turns latter infected, and it
stays infected



Analysis (contd.)

« Continuous time process

e Then
oy ?
i (Why?)
with solution:
. n(n+1) (n+1)

V= -
n_l_e,B(nJrl)t ? l_l_ne LB(n+1)t

(can you derive it?)



Epidemic Multicast

@ INFECTED

PROTOCOL ROUNDS (LOCAL CLOCK)
b RANDOM TARGETS PER ROUND

/

GOSSIP MESSAGE (UDP) ®

/ © UNINFECTED

O



Epidemic Multicast Analysis

b
f=— (why?)

n

Substituting, at time t=clog(n), the number of infected is

1

y=m+l)———
7

(correct? can you derive it?)



Analysis (contd.)

« Set ¢, b to be small numbers independent of n
« Within clog(n) rounds, [low latency]

1

ch-2
n

» all but number of nodes receive the multicast

[reliability]

» each node has transmitted no more than cblog(n)
gossip messages [lightweight]



Why is log(N) low?

* log(N) is not constant in theory

« But pragmatically, it is a very slowly growing
number

« Base 2

—log(1000) ~ 10

—log(1M) ~ 20

—log (1B) ~ 30

—log(all IPv4 address) = 32




Fault-tolerance

Packet loss

—50% packet loss: analyze with b replaced
with b/2

— To achieve same reliability as 0% packet loss,
takes twice as many rounds

Node failure

—50% of nodes fail: analyze with n replaced
with n/2 and b replaced with b/2

—Same as above



Fault-tolerance

« With failures, is it possible that the epidemic might die
out quickly?

* Possible, but improbable:

— Once a few nodes are infected, with high probability, the
epidemic will not die out

— So the analysis we saw in the previous slides is actually
behavior with high probability

[Galey and Dani 98]

* Think: why do rumors spread so fast? why do
infectious diseases cascade quickly into epidemics?
why does a virus or worm spread rapidly?



Pull Gossip: Analysis

In all forms of gossip, it takes O(log(N)) rounds before
about N/2 processes get the gossip

— Why? Because that’s the fastest you can spread a
message — a spanning tree with fanout (degree) of
constant degree has O(log(N)) total nodes

Thereatfter, pull gossip is faster than push gossip

After the fth, round let p, be the fraction of non-infected
processes. Let each round have k pulls. Then

pi+l - (l?i)@rl
This is super-exponential
Second half of pull gossip finishes in time O(log(log(N))



Summary

* Multicast is an important problem
* Tree-based multicast protocols

* When concerned about scale and fault-tolerance, gossip is
an attractive solution

* Also known as epidemics
 Fast, reliable, fault-tolerant, scalable, topology-aware



Next Topic:
Primary-backup replication
(pre-reading: VM replication)

68



