Primary-Backup Replication

alllauc Ellal) deals

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 7

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Simplified Fault Tolerance in MapReduce

User
Program

1) fork .- . "
(1) fork (1) foik (l)‘fork

MapReduce used GFS stateless workers, and
clients themselves to achieve fault tolerance

----- -q---.-------------------G)r-ern-ote-ra(r-

split 2 MO (4) local write
worker

split 3

split 4

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Limited Fault Tolerance in Totally-
Ordered Multicast

£ =
%
« Stateful server replication for fault tolerance...

* But no story for server replacement upon a
server failure - no replication

Plan

1. Introduction to Primary-Backup replication

2. Case study: VMWare's fault-tolerant virtual
machine

* Upcoming — Two-phase commit and
Distributed Consensus protocols

Primary-Backup: Goals

Mechanism: Replicate and separate servers

Goal #1: Provide a highly reliable service
—Despite some server and network failures
» Continue operation after failure

« Goal #2: Servers should behave just like a
single, more reliable server

State machine replication

* Any server is essentially a state machine
— Set of (key, value) pairs is state
— Operations transition between states

* Need an op to be executed on all replicas, or none at all
— I.e., we need distributed all-or-nothing atomicity
— If op is deterministic, replicas will end in same state

« Key assumption: Operations are deterministic
— We will relax this assumption later today

Primary-Backup (P-B) approach

 Nominate one server the call the other
the

— Clients send all operations (get, put) to
current primary

— The primary orders clients’ operations

* Should be only one primary at a time

i- Need to keep clients, primary, and backup in
' sync: who is primary and who is backup

Challenges

Network and server failures

Network partitions

—Within each network partition, near-perfect
communication between servers

— Between network partitions, no
communication between servers

Primary-Backup (P-B) approach
o

Clie% ¢ S, (Backup)

S, (PrimaDry)

1. Primary logs the operation locally

2. Primary sends operation to backup and waits for ack
— Backup performs or just adds it to its

3. Primary performs op and acks to the client
— After backup has applied the operation and ack’ed

{
View server I

* A view server decides who is primary, who is
backup

— Clients and servers depend on view server
* Don't decide on their own (might not agree)

» Challenge in designing the view service:
— Only want one primary at a time
— Careful protocol design needed

 For now, assume view server never fails

10

Monitoring server liveness

Each replica periodically pings the view server

— View server declares replica dead if it missed N
pings in a row
— Considers the replica alive after a single ping

Can a replica be alive but declared “dead” by
view server?

—Yes, in the case of network failure or partition

11

The view server decides the current view

(view #, primary server, backup server)

Challenge: All parties make their own local
decision of the current view number

ks — et WRRRS T ———
% (1,S.,S,) II -
Client (2,S,, -) S, (Beiokany)

S; (Bidekup)

Agreeing on the current view

* In general, any number of servers can ping view server
« Okay to have a view with a primary and no backup

* Want everyone to agree on the view number
— Include the view # in RPCs between all parties

Transitioning between views

* How to ensure new primary has up-to-date state?
— Only promote a previous backup
* l.e., don’'t make a previously-idle server primary
— Set liveness detection timeout > state transfer time

* How does view server know whether backup is up to date?
— View server sends message to all
— Primary must ack new view once backup is up-to-date

— View server stays with current view until ack
* Even if primary has or appears to have failed

Split Brain

Client

Server S, in the old view

=)

ﬂ?’

Client

View Server

§

(1, S1, Sy)
(2, Sy, —)

/

L] =

0

N

16

Server S, in the new view

Client

17

State transfer via operation log

* How does a new backup get the current state?
—If S, is backup in view / but was not in view /-1
— S, asks primary to transfer the state

* One alternative: transfer the entire operation log

State transfer via snapshot

« Every op must be either before or after state transfer
— If op before transfer, transfer must reflect op

— If op after transfer, primary forwards the op to the
packup after the state transfer finishes

« If each client has only one RPC outstanding at a time,
state = map + result of the last RPC from each client

— (Had to save this anyway for “at most once” RPC)

Summary of rules

1. View /s primary must have been primary/backup in view -1

2. A non-backup must reject forwarded requests

— Backup accepts forwarded requests only if they are in its
iIdea of the current view

3. Anon-primary must reject direct client requests

4. Every operation must be before or after state transfer

Primary-Backup: Summary

* First step in our goal of making stateful replicas
fault-tolerant

* Allows replicas to provide continuous service
despite persistent net and machine failures

* Finds repeated application in practical
systems (nhext)

21

Plan

1. Introduction to Primary-Backup replication

2. Case study: VMWare’s fault-tolerant virtual
machine
Scales et al., SIGOPS Operating Systems Review 44(4), Dec. 2010 (PDF)

Upcoming — Two-phase commit and
Distributed Consensus protocols

22

VMware vSphere Fault Tolerance (VM-FT)

 Goals:

1. Replication of the whole virtual machine

2. Completely transparent to applications and
clients

3. High availability for any existing software

23

Overview

« Two virtual machines (primary,
backup) on different bare metal

» Logging channel runs over network

* Fiber channel-attached shared disk

ﬁ Loggln ﬁ
channe

\Shared Disk/

24

Virtual Machine 1/O

VM inputs
— Incoming network packets
— Disk reads
— Keyboard and mouse events
— Clock timer interrupt events

VM outputs
— QOutgoing network packets
— Disk writes

Overview

* Primary sends inputs to backup (5/i1an Backup
VM

VM

N Loggin
=~ channe

« Backup outputs dropped

* Primary-backup heartbeats
— If primary fails, backup takes over \ /
Shared Disk

L ==

26

VM-FT: Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)

Log-based VM replication

« Step 1: Hypervisor at the primary logs the
causes of non-determinism:

1. Log results of input events
— Including current program counter value for each

2. Log results of non-deterministic instructions
— e.g. log result of timestamp counter read (RDTSC)

28

Log-based VM replication

Step 2: Primary hypervisor sends log entries to
backup hypervisor over the logging channel

Backup hypervisor replays the log entries

— Stops backup VM at next input event or non-
deterministic instruction

* Delivers same input as primary

e Delivers same non-deterministic instruction
result as primary

29

VM-FT Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server
— FT Protocol

3. Avoiding two primaries (Split Brain)

30

Primary to backup failover

When backup takes over, non-determinism will
make it execute differently than primary would
have done

—This Is okay!

Output requirement: When backup VM takes
over, its execution is consistent with outputs
the primary VM has already sent

31

The problem of inconsistency

W
Input & Output
N, &Y A
Primary I I‘Q—>
Backup E
..
/))Q
/\
£
%

32

FT protocol

Primary logs each output operation
— Delays any output until Backup acknowledges it

Input

Primary

Duplicate output

F --
i

! Can restart execution at an output event ! .

VM-FT: Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
— Logging channel may break

34

Detecting and responding to failures

Primary and backup each run UDP heartbeats,
monitor logging traffic from their peer

Before “going live” (backup) or finding new
backup (primary), execute an atomic test-and-
set on a variable in shared storage

* |f the replica finds variable already set, it aborts

VM-FT: Conclusion

 Challenging application of primary-backup
replication

* Design for correctness and consistency of
replicated VM outputs despite failures

» Performance results show generally high

performance, low logging bandwidth
overhead

36

Sunday topic:
Two-Phase Commit

37

