
Two-Phase Commit

CS 240: Computing Systems and Concurrency
Lecture 8

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

• Fault tolerance in a nutshell

• Safety and liveness

• Two-phase commit

2

Plan

Fault tolerance in a nutshell

3

• Building reliable systems from unreliable
components

• Three basic steps
1. Detecting errors: discovering the presence of an

error in a data value or control signal
2. Containing errors: limiting how far errors

propagate
3. Masking errors: designing mechanisms to

ensure a system operates correctly despite error
(and possible correct error)

4

What is fault tolerance?

• Say one bit in a DRAM fails…

• …it flips a bit in a memory address the
kernel is writing to...

• ...causes big memory error elsewhere, or a
kernel panic...

• ...program is running one of many
distributed file system storage servers...

• ...a client can’t read from FS, so it hangs.
5

Why is fault tolerance hard?
Failures

Propagate

1. Do nothing: silently return the failure

2. Fail fast: detect the failure and report at interface
• Ethernet station jams medium on detecting collision

3. Fail safe: transform incorrect behavior or values into
acceptable ones

• Failed traffic light controller switches to blinking-red

4. Mask the failure: operate despite failure
• Retry op for transient errors, use error-correcting code

for bit flips, replicate data in multiple places
6

So what to do?

• We mask failures on one server via
– Atomic operations
– Logging and recovery

• In a distributed system with multiple servers, we
might replicate some or all servers
– Requires a mechanism to keep replica servers

consistent in a fault tolerant way

7

Masking failures

Safety and liveness

8

• This is hard!
– How do we design fault-tolerant systems?
– How do we know if we’re successful?

• Often use “properties” that hold true for every
possible execution

• We focus on safety and liveness properties

9

Reasoning about fault tolerance

• “Bad things” don’t happen, ever
– No stopped or deadlocked states
– No error states

• Examples
– Mutual exclusion: two processes can’t be in a

critical section at the same time
– Bounded overtaking: if process 1 wants to enter a

critical section, process 2 can enter at most once
before process 1

10

Safety

• “Good things” happen
– …eventually

• Examples
– Starvation freedom: process 1 can eventually enter

a critical section as long as process 2 terminates
– Eventual consistency: if a value in an application

doesn’t change, two servers will eventually agree
on its value

11

Liveness

• “Good” and “bad” are application-specific

• Safety is very important in banking transactions
– May take some time to confirm a transaction

• Liveness is very important in social networking
sites
– See updates right away (what about the “breakup

problem”?)

12

Often a trade-off

Two-phase commit

13

send_money(A, B, amount) {

Begin_Transaction();

if (A.balance - amount >= 0) {

A.balance = A.balance - amount;

B.balance = B.balance + amount;

Commit_Transaction();

} else {

Abort_Transaction();

}

}

14

Motivation: sending money

15

Single-server: ACID
• Atomicity: all parts of the transaction execute or none

(A’s decreases and B’s balance increases)

• Consistency: the transaction only commits if it preserves
invariants (A’s balance never goes below 0)

• Isolation: the transaction executes as if it executed by
itself (even if C is accessing A’s account, that will not
interfere with this transaction)

• Durability: the transaction’s effects are not lost after it
executes (updates to the balances will remain forever)

16

Distributed transactions?

• Partition databases across multiple machines for
scalability (A and B might not share a server)

• A transaction might touch more than one partition

• How do we guarantee that all of the partitions
commit the transactions or none commit the
transactions?

• Goal: General purpose, distributed agreement on some
action, with failures
– Different entities play different roles in the action

• Running example: Transfer money from A to B
– Debit at A, credit at B, tell the client “okay”
– Require both banks to do it, or neither
– Require that one bank never act alone

• This is an all-or-nothing atomic commit protocol
– Later will discuss how to make it before-or-after atomic

17

Two-Phase Commit (2PC)

1. C à TC: “go!”

Straw Man protocol

Client C

Transaction
Coordinator TC

Bank

go!

A B

1. C à TC: “go!”

2. TC à A: “debit $20!”
TC à B: “credit $20!”
TC à C: “okay”

• A, B perform actions on receipt of
messages

Straw Man protocol

Client C

Transaction
Coordinator TC

Bank

go!

A B

okay

What could possibly go wrong?

1. Not enough money in A’s bank account?

2. B’s bank account no longer exists?

3. A or B crashes before receiving message?

4. The best-effort network to B fails?

5. TC crashes after it sends debit to A but before sending
to B?

20

Reasoning about the Straw Man protocol

• Note that TC, A, and B each have a notion of committing

• We want two properties:

1. Safety
– If one commits, no one aborts
– If one aborts, no one commits

2. Liveness
– If no failures and A and B can commit, action commits
– If failures, reach a conclusion ASAP

21

Safety versus liveness

1. C à TC: “go!”

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank

go!

A B

1. C à TC: “go!”

2. TC à A, B: “prepare!”

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank

prepare! prepare!

A B

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank A B

commit! commit!

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank A B

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

5. TC àC: “okay” or “failed”

• A, B commit on receipt of commit
message

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank A B

okay

• Why is this correct?
– Neither can commit unless both agreed to commit

• What about performance?
1. Timeout: I’m up, but didn’t receive a message I

expected
• Maybe other node crashed, maybe network broken

2. Reboot: Node crashed, is rebooting, must clean
up

27

Reasoning about atomic commit

Where do hosts wait for messages?

1. TC waits for “yes” or “no” from A and B
– TC hasn’t yet sent any commit messages, so can safely abort after a

timeout
– But this is conservative: might be network problem

• We’ve preserved correctness, sacrificed performance

2. A and B wait for “commit” or “abort” from TC
– If it sent a no, it can safely abort (why?)
– If it sent a yes, can it unilaterally abort?
– Can it unilaterally commit?
– A, B could wait forever, but there is an alternative…

28

Timeouts in atomic commit

• Consider Server B (Server A case is symmetric) waiting for commit or
abort from TC
– Assume B voted yes (else, unilateral abort possible)

• B à A: “status?” A then replies back to B. Four cases:
1. (No reply from A): no decision, B waits for TC
2. Server A received commit or abort from TC: Agree with the TC’s

decision
3. Server A hasn’t voted yet or voted no: both abort

• TC can’t have decided to commit

4. Server A voted yes: both must wait for the TC
• TC decided to commit if both replies received
• TC decided to abort if it timed out

29

Server termination protocol

• What are the liveness and safety properties?
– Safety: if servers don’t crash and network between A and B is

reliable, all processes reach the same decision (in a finite number
of steps)

– Liveness: if failures are eventually repaired, then every
participant will eventually reach a decision

• Can resolve some timeout situations with guaranteed correctness

• Sometimes however A and B must block
– Due to failure of the TC or network to the TC

• But what will happen if TC, A, or B crash and reboot?

30

Reasoning about the server
termination protocol

• Can’t back out of commit if already decided
– TC crashes just after sending “commit!”
– A or B crash just after sending “yes”

• If all nodes knew their state before crash, we
could use the termination protocol…
– Use write-ahead log to record “commit!” and “yes”

to disk

31

How to handle crash and reboot?

• If everyone rebooted and is reachable, TC can just check
for commit record on disk and resend action

• TC: If no commit record on disk, abort
– You didn’t send any “commit!” messages

• A, B: If no yes record on disk, abort
– You didn’t vote “yes” so TC couldn’t have committed

• A, B: If yes record on disk, execute termination protocol
– This might block

32

Recovery protocol with non-volatile state

• This recovery protocol with non-volatile logging is
called Two-Phase Commit (2PC)

• Safety: All hosts that decide reach the same decision
– No commit unless everyone says “yes”

• Liveness: If no failures and all say “yes” then commit
– But if failures then 2PC might block
– TC must be up to decide

• Doesn’t tolerate faults well: must wait for repair

33

Two-Phase Commit

Wednesday topic
Consensus I: FLP Impossibility and

Paxos

34

Two-phase commit

failure scenarios

35

36

What if participant fails before
sending response?

37

What if participant fails after
sending vote

38

What if participant lost a vote?

39

What if coordinator fails before
sending prepare?

40

What if coordinator fails after
sending prepare?

41

What if coordinator fails after
receiving votes

42

What if coordinator fails after
sending decision?

43

Do we need the coordinator?

44

What happens if we don’t have a
decision?

