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• Two-phase commit
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Fault tolerance in a nutshell
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• Building reliable systems from unreliable
components

• Three basic steps
1. Detecting errors: discovering the presence of an 

error in a data value or control signal
2. Containing errors: limiting how far errors 

propagate
3. Masking errors: designing mechanisms to 

ensure a system operates correctly despite error 
(and possible correct error)

4

What is fault tolerance?



• Say one bit in a DRAM fails…

• …it flips a bit in a memory address the 
kernel is writing to...

• ...causes big memory error elsewhere, or a 
kernel panic...

• ...program is running one of many 
distributed file system storage servers...

• ...a client can’t read from FS, so it hangs.
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Why is fault tolerance hard?
Failures

Propagate



1. Do nothing: silently return the failure

2. Fail fast: detect the failure and report at interface
• Ethernet station jams medium on detecting collision 

3. Fail safe: transform incorrect behavior or values into 
acceptable ones

• Failed traffic light controller switches to blinking-red

4. Mask the failure: operate despite failure
• Retry op for transient errors, use error-correcting code 

for bit flips, replicate data in multiple places
6

So what to do?



• We mask failures on one server via
– Atomic operations
– Logging and recovery

• In a distributed system with multiple servers, we 
might replicate some or all servers
– Requires a mechanism to keep replica servers 

consistent in a fault tolerant way
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Masking failures



Safety and liveness
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• This is hard!
– How do we design fault-tolerant systems?
– How do we know if we’re successful?

• Often use “properties” that hold true for every 
possible execution

• We focus on safety and liveness properties
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Reasoning about fault tolerance



• “Bad things” don’t happen, ever
– No stopped or deadlocked states
– No error states

• Examples
– Mutual exclusion: two processes can’t be in a 

critical section at the same time
– Bounded overtaking: if process 1 wants to enter a 

critical section, process 2 can enter at most once 
before process 1
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Safety



• “Good things” happen
– …eventually

• Examples
– Starvation freedom: process 1 can eventually enter 

a critical section as long as process 2 terminates
– Eventual consistency: if a value in an application 

doesn’t change, two servers will eventually agree 
on its value
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Liveness



• “Good” and “bad” are application-specific

• Safety is very important in banking transactions
– May take some time to confirm a transaction

• Liveness is very important in social networking 
sites
– See updates right away (what about the “breakup 

problem”?)
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Often a trade-off



Two-phase commit
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send_money(A, B, amount) {

Begin_Transaction();

if (A.balance - amount >= 0) {

A.balance = A.balance - amount;

B.balance = B.balance + amount;

Commit_Transaction(); 

} else {

Abort_Transaction(); 

}

} 
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Motivation: sending money
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Single-server: ACID
• Atomicity: all parts of the transaction execute or none 

(A’s decreases and B’s balance increases)

• Consistency: the transaction only commits if it preserves 
invariants (A’s balance never goes below 0)

• Isolation: the transaction executes as if it executed by 
itself (even if C is accessing A’s account, that will not 
interfere with this transaction)

• Durability: the transaction’s effects are not lost after it 
executes (updates to the balances will remain forever)
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Distributed transactions?

• Partition databases across multiple machines for 
scalability (A and B might not share a server)

• A transaction might touch more than one partition

• How do we guarantee that all of the partitions 
commit the transactions or none commit the 
transactions?



• Goal: General purpose, distributed agreement on some 
action, with failures
– Different entities play different roles in the action

• Running example: Transfer money from A to B
– Debit at A, credit at B, tell the client “okay”
– Require both banks to do it, or neither
– Require that one bank never act alone

• This is an all-or-nothing atomic commit protocol
– Later will discuss how to make it before-or-after atomic
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Two-Phase Commit (2PC)



1. C à TC: “go!”

Straw Man protocol

Client C

Transaction 
Coordinator TC

Bank

go!

A B



1. C à TC: “go!”

2. TC à A: “debit $20!”
TC à B: “credit $20!”
TC à C: “okay”

• A, B perform actions on receipt of 
messages

Straw Man protocol

Client C

Transaction 
Coordinator TC

Bank

go!

A B

okay



What could possibly go wrong?

1. Not enough money in A’s bank account?

2. B’s bank account no longer exists?

3. A or B crashes before receiving message?

4. The best-effort network to B fails?

5. TC crashes after it sends debit to A but before sending 
to B?
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Reasoning about the Straw Man protocol



• Note that TC, A, and B each have a notion of committing

• We want two properties:

1. Safety
– If one commits, no one aborts
– If one aborts, no one commits

2. Liveness
– If no failures and A and B can commit, action commits
– If failures, reach a conclusion ASAP
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Safety versus liveness



1. C à TC: “go!”

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank

go!

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank

prepare! prepare!

A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank A B



commit! commit!

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank A B



1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

5. TC àC: “okay” or “failed”

• A, B commit on receipt of commit 
message

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank A B

okay



• Why is this correct?
– Neither can commit unless both agreed to commit

• What about performance?
1. Timeout: I’m up, but didn’t receive a message I 

expected
• Maybe other node crashed, maybe network broken

2. Reboot: Node crashed, is rebooting, must clean 
up
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Reasoning about atomic commit



Where do hosts wait for messages?

1. TC waits for “yes” or “no” from A and B
– TC hasn’t yet sent any commit messages, so can safely abort after a 

timeout
– But this is conservative: might be network problem

• We’ve preserved correctness, sacrificed performance

2. A and B wait for “commit” or “abort” from TC
– If it sent a no, it can safely abort (why?)
– If it sent a yes, can it unilaterally abort?
– Can it unilaterally commit?
– A, B could wait forever, but there is an alternative…
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Timeouts in atomic commit



• Consider Server B (Server A case is symmetric) waiting for commit or 
abort from TC
– Assume B voted yes (else, unilateral abort possible)

• B à A: “status?” A then replies back to B. Four cases:
1. (No reply from A): no decision, B waits for TC
2. Server A received commit or abort from TC: Agree with the TC’s

decision
3. Server A hasn’t voted yet or voted no: both abort

• TC can’t have decided to commit

4. Server A voted yes: both must wait for the TC
• TC decided to commit if both replies received
• TC decided to abort if it timed out
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Server termination protocol



• What are the liveness and safety properties?
– Safety: if servers don’t crash and network between A and B is 

reliable, all processes reach the same decision (in a finite number 
of steps)

– Liveness: if failures are eventually repaired, then every 
participant will eventually reach a decision

• Can resolve some timeout situations with guaranteed correctness

• Sometimes however A and B must block
– Due to failure of the TC or network to the TC

• But what will happen if TC, A, or B crash and reboot?
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Reasoning about the server 
termination protocol



• Can’t back out of commit if already decided
– TC crashes just after sending “commit!”
– A or B crash just after sending “yes”

• If all nodes knew their state before crash, we 
could use the termination protocol…
– Use write-ahead log to record “commit!” and “yes” 

to disk
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How to handle crash and reboot?



• If everyone rebooted and is reachable, TC can just check 
for commit record on disk and resend action

• TC: If no commit record on disk, abort
– You didn’t send any “commit!” messages

• A, B: If no yes record on disk, abort
– You didn’t vote “yes” so TC couldn’t have committed

• A, B: If yes record on disk, execute termination protocol
– This might block
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Recovery protocol with non-volatile state



• This recovery protocol with non-volatile logging is 
called Two-Phase Commit (2PC)

• Safety: All hosts that decide reach the same decision
– No commit unless everyone says “yes”

• Liveness: If no failures and all say “yes” then commit
– But if failures then 2PC might block
– TC must be up to decide

• Doesn’t tolerate faults well: must wait for repair
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Two-Phase Commit



Wednesday topic
Consensus I: FLP Impossibility and 

Paxos
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Two-phase commit

failure scenarios
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What if participant fails before 
sending response?
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What if participant fails after 
sending vote
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What if participant lost a vote?
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What if coordinator fails before 
sending prepare?
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What if coordinator fails after 
sending prepare?
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What if coordinator fails after 
receiving votes
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What if coordinator fails after 
sending decision?
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Do we need the coordinator?
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What happens if we don’t have a 
decision?


