Two-Phase Commit

alllauc Ellall aealy

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 8

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Plan
 Fault tolerance in a nutshell
« Safety and liveness

* Two-phase commit

Fault tolerance in a nutshell

What is fault tolerance?

 Building systems from
components

* Three basic steps

_ : discovering the presence of an
error in a data value or control signal

. limiting how far errors
propagate

: designing mechanisms to
ensure a system operates correctly despite error
(and possible correct error)

Why is fault tolerance hard?

Fallures . ggy in a DRAM fails. ..

Propagate
o o ...t in @ memory address the
L kernel is writing to...
e ...causes big memory error elsewhere, or a
o e ...program is running one of many
P distributed file system storage servers...

\--I :-7

s
\
o

N, ...a client , SO It hangs.

5

So what to do?

. silently return the failure

. detect the failure and report at interface
* Ethernet station jams medium on detecting collision

: transform incorrect behavior or values into
acceptable ones

« Falled traffic light controller switches to blinking-red

. operate despite failure

* Retry op for transient errors, use error-correcting code
for bit flips, replicate data in multiple places

Masking failures

We mask failures on via
— Atomic operations

— Logging and recovery

In a distributed system with , We
might replicate some or all servers

— Requires a mechanism to keep replica servers
consistent in a fault tolerant way

Safety and liveness

Reasoning about fault tolerance

* This is hard!
— How do we design fault-tolerant systems?

— How do we know if we're successful?

« Often use “properties” that hold true for every
possible execution

* We focus on and properties

Safety

“Bad things” don’t happen, ever
— No stopped or deadlocked states

— No error states

Examples

— Mutual exclusion: two processes can’t be in a
critical section at the same time

— Bounded overtaking: if process 1 wants to enter a
critical section, process 2 can enter at most once
before process 1

Liveness

“Good things™ happen

— ...eventually

Examples

— Starvation freedom: process 1 can eventually enter
a critical section as long as process 2 terminates

— Eventual consistency: if a value in an application
doesn’t change, two servers will eventually agree
on its value

Often a trade-off

“Good” and “bad” are application-specific

Safety is very important in banking transactions

— May take some time to confirm a transaction

Liveness is very important in social networking
sites

— See updates right away (what about the “breakup
problem™?)

Two-phase commit

Motivation: sending money

send money (A, B, amount) ({
Begin Transaction();
if (A.balance - amount >= 0) {
A.balance = A.balance - amount;
B.balance = B.balance + amount;
Commit Transaction();
} else {

Abort Transaction();

14

Single-server: ACID

. all parts of the transaction execute or none
(A's decreases and B’s balance increases)

. the transaction only commits if it preserves
iInvariants (A's balance never goes below 0)

. the transaction executes as Iif it executed by
itself (even if C is accessing A's account, that will not
interfere with this transaction)

: the transaction’s effects are not lost after it
executes (updates to the balances will remain forever)

Distributed transactions?

Partition databases across multiple machines for
scalability (A and B might not share a server)

A transaction might touch more than one partition

How do we guarantee that all of the partitions
commit the transactions or none commit the
transactions?

Two-Phase Commit (2PC)

« Goal: General purpose, distributed agreement on some
action, with failures

— Different entities play different roles in the action

 Running example: Transfer money from Ato B
— Debit at A, credit at B, tell the client “okay”
— Require both banks to do it, or neither
— Require that one bank never act alone

* This is an all-or-nothing atomic commit protocol
— Later will discuss how to make it before-or-after atomic

Straw Man protocol

1. C - TC: “go!”

Client C %

go! l
Transaction

Coordinator TC W
A B

Bank

Straw Man protocol

1. C-> TC: ‘go’”
Client C
% 2. TC = A: “debit $20!”
90-’1 Tokay TC - B: “credit $20!”
Transaction

TC - C: “okay”

TAAY
3 8« A, B perform actions on receipt of

MeSSages

Bank A B

Reasoning about the Straw Man protocol

What could possibly go wrong?

1.

2.

Not enough money in A’s bank account?
B’s bank account no longer exists?

A or B crashes before receiving message”?
The best-effort network to B fails?

TCBg?rashes after it sends debit to A but before sending
to B"

Safety versus liveness

* Note that TC, A, and B each have a notion of committing
* We want two properties:

1. Safety
— |[f one commits, no one aborts
— |f one aborts, no one commits

2. Liveness
— |If no failures and A and B can commit, action commits
— If failures, reach a conclusion ASAP

21

A correct atomic commit protocol

1. C> TC: “go!”

Client C %

go!l
Transaction WV

Coordinator TC W
A B

Bank

A correct atomic commit protocol

1. C->TC: “‘goV”
Client C %
en 2. TC - A, B: “prepare!”
Transaction .
Coordinator TC

prepare! [\ prepare!

A correct atomic commit protocol

1. C-> TC: “‘go’”
Cli tC‘EiL»
en 2. TC - A, B: “prepare!”
Transacion 3. A,B=>P:%es”or ‘no”

Coordinator TC

A
v v

Bank

A correct atomic commit protocol

1. C->TC: “‘goV”
Client C ‘%ﬁp
en 2. TC > A, B: “prepare!”
Transaction) 3. A,B->P:yes’or ‘no”

Coordinator TC

commit! [L‘ \Comm,t/ 4. TC - A, B: ‘commit!” or “abort!”

— TC sends commitif both say yes
L‘U L‘U — TC sends abortif either say no

Bank

A correct atomic commit protocol

1. C-=>TC: “goV”
Client € % 2. TC = A, B: ‘prepare!”
Okay u b4 »” 111 1]
Transaction T 3. A,B->P:yes’or no
Coordinator TC »
\U 4. TC = A, B: “commit!” or “abort!”

— TC sends commitif both say yes
— TC sends abort if either say no

L‘U L‘U 5. TC > C: “okay” or “failed”
A B

« A, B commit on receipt of commit
message

Bank

Reasoning about atomic commit

Why is this correct?

— Neither can commit unless both agreed to commit

What about performance?

1. Timeout: 'm up, but didn't receive a message |
expected
Maybe other node crashed, maybe network broken

2. Reboot: Node crashed, is rebooting, must clean
up

Timeouts in atomic commit

Where do hosts for messages?

1. TC waits for “yes” or “no” from A and B

— TC hasn't yet sent any commit messages, so can safely abort after a
timeout

— But this is conservative: might be network problem

We've preserved correctness, sacrificed performance

2. A and B wait for “commit” or “abort” from TC
— Ifit sent a no, it can safely abort (why?)
— Ifit sent a yes, can it unilaterally abort?
— Can it unilaterally commit?
— A, B could wait forever, but there is an alternative...

Server termination protocol

Consider Server B (Server A case is symmetric) waiting for commit or
abort from TC

— Assume B voted yes (else, unilateral abort possible)

B > A: “status?’ A then replies back to B. Four cases:
1. (No reply from A): no decision, B waits for TC

2. Server A received commit or abort from TC: Agree with the TC’s
decision

3. Server A hasn’t voted yet or voted no: both abort
» TC can'’t have decided to commit
4. Server A voted yes: both must wait for the TC

» TC decided to commit if both replies received
» TC decided to abort if it timed out

Reasoning about the server

termination protocol

What are the liveness and safety properties?

fety: if servers don’t crash and network between Aand B is
r?clla}[ble,)all processes reach the same decision (in a finite number
of steps

ness: if failures are eventually repaired, then every
participant will eventually reach a decision

Can resolve timeout situations with guaranteed correctness

Sometimes however A and B must block
— Due to failure of the TC or network to the TC

But what will happen if TC, A, or B crash and reboot?

How to handle crash and reboot?

Can’t back out of commit if already decided
— TC crashes just after sending “commit!”

— A or B crash just after sending “yes”

If all nodes knew their state before crash, we
could use the termination protocol...

— Use write-ahead log to record “commit!” and “yes”
to disk

Recovery protocol with non-volatile state

If everyone rebooted and is reachable, TC can just check
for commit record on disk and action

TC: If no commit record on disk, abort

— You didn’t send any “commit!” messages

A, B: If no yes record on disk, abort
— You didn’t vote “yes”so TC couldn’t have committed

A, B: If yes record on disk, execute termination protocol
— This might block

Two-Phase Commit

 This recovery protocol with non-volatile logging is
called Two-Phase Commit (2PC)

« Safety: All hosts that decide reach the same decision
— No commit unless everyone says “yes”

* Liveness: If no failures and all say “yes” then commit
— But if failures then 2PC might block
— TC must be up to decide

 Doesn’t tolerate faults well: must wait for repair

33

Wednesday topic
Consensus I: FLP Impossibility and
Paxos

34

Two-phase commit

failure scenarios

What if participant fails before
sending response?

Coordinator Participant Participant
PREPARE | \
PREPARE
YES &
No ABORT g

_rrn)

‘ﬂ— DECISION? |
T ABORT ~J

36

What if participant fails after
sending vote

Coordinator Participant Participant
L: PREPARE
‘ PREPARE |
—0 — @1
/ YES \

YES
COMMIT

N O
j COMMIT J
| ¢

37

What if participant lost a vote?

PREPARE
PREPARE
D &— YES
| YES

(]

No ABORT

DECISION?

B asorT J a

What if coordinator fails before

sending prepare?

Coordinator Participant Participant
|
3 /L
)
E " PREPARE
| PREPARE
—p
YES
YES
YES COMMIT
COMMIT
— —

39

What if coordinator fails after
sending prepare?

Coordinator Participant Participant
(a PREPARE
PREPARE
—py
/ PREPARE
PREPARE
ﬁ :*
YES
YES YES
COMMIT
COMMIT
— —p

What if coordinator fails after
receiving votes

Coordinator Participant Participant
'a PREPARE
| — PREPARE
j :*
YES YES
@ PREPARE =)
— REPARE
— —
YES
YES YES
COMMIT
COMMIT
— —p

What if coordinator fails after
sending decision?

Participant
'a PREPARE
— PREPARE
-
-t: YES
YES YES
A conmn
—> ®
@ DECISION? °
r COMMIT
—>]

Do we need the coordinator?

PREPARE

<

PREPARE
ES YES

&

COMMIT
o ~
©

YES

DECISION?

<4

/\’
©
COMNTL|

43

What happens if we don’t have a
decision?

Coordinator Participant Participant
‘a PREPARE
PREPARE
~ —n
YES YEs | ’
or ©
NO? — DECISION?
|
YES
‘___
CoOMMIT?

