View Change Protocols and
Reconfiguration

alllauc Ellall aealy

'\\‘-_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 11

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Today

1. More primary-backup replication
2. View changes

3. Reconfiguration

Review: primary-backup replication

* Nominate one replica primary
— Clients send all requests to primary
— Primary orders clients’ requests

CeBERE e
£

4 LogginM%ing S\ate)

Module achine Mo¥iu Maghine

D B D B
Log\ i‘ Log

ﬁ Servers
add | jmp mov| s add jmp mov| s)

From two to many

CEEEEEE

add|jmp

mov

A

.

J

.

QD D

Log\

add

jmp

mov

4

J

4 Logging Logging L
Module achine Module achine

Log\

.

shl
ogling S\ate)
oYule Madhine

4]

add|jmp

mov| s)

« Last time: Primary-Backup case study

Clients

Servers

* Today: State Machine Replication with many replicas
— Survive more failures

Introduction to Viewstamped Replication

State Machine Replication for any number of replicas

Replica group: Group of 2f+ 1 replicas
— Protocol can tolerate freplica crashes

Viewstamped Replication Assumptions:

1. Handles crash failures only
— Replicas fail only by completely stopping

2. Unreliable network: Messages might be lost,
duplicated, delayed, or delivered out-of-order

Replica state

1. configuration: identities of all 2f + 1 replicas

2. In-memory log with clients’ requests in assigned order

(op1, args1) |(op2, args2)| (op3, args3) |(op4, args4)| s = =

Normal operation (F=1)

Request : Prepare : PrepareOK : Reply
Client 1 I I
\ | | | Execute /
A (Primary) I : :%{
I I]
B i i I
L\ '
C I I I

Time 2
1. Primary adds request to end of its log

2. Replicas add requests to their logs in primary’s log order

3. Primary waits for f PrepareOKs - request is committed
— Makes up-call to execute the operation ¢

7

Normal operation: Key points (F=1)

Request Prepare PrepareOK Reply

Client

Execute

A (Primary)
C

* Protocol guarantees state machine replication

Time 2

* On execute, primary knows request in f+ 1 =2 nodes’ logs
— Even if f=1 then crash, 2 1 retains request in log

Where’s the commit message? (-1

Request Prepare PrepareOK Reply
Client

+Commit previous
Execute

A (Primary)
C

Commit Time >

* Previous Request's commit piggybacked on current Prepare

* No client Request after a timeout period?
— Primary sends Commit message to all backup replicas

The need for a view change

« So far: Works for f failed backup replicas
« But what if the ffailures include a failed primary?

— All clients’ requests go to the failed primary
— System halts despite merely ffailures

CEEEEEE

10

Today

1. More primary-backup replication

2. View changes
— With Viewstamped Replication
— Using a View Server
— Fallure detection

3. Reconfiguration

11

Views

 Let different replicas assume role of primary over time

« System moves through a sequence of views
— View = (view number, primary id, backup id, ...)

CEEEEEE

llllllllll CEEEEEE

View #3,#6, .. [l s]
CeEeEREE 2@ — [

. View #1, #4, ...
c.d [“

View #2, #5, ...

12

View change protocol

» Backup replicas monitor primary

* |If primary seems faulty (no Prepare/Commit):

— Backups execute the view change protocol to
select new primary

* View changes execute automatically, rapidly

* Need to keep clients and replicas in sync: same
local state of the current view
« Same local state at clients
« Same local state at replicas

13

Making the view change correct

* View changes happen locally at each replica

« Old primary executes requests in the old view, new
primary executes requests in the new view

« Want to ensure state machine replication

* So correctness condition: Committed requests
1. Survive in the new view

2. Retain the same order in the new view

Replica state (for view change)

1. configuration: sorted identities of all 2f + 1 replicas
2. In-memory log with clients’ requests in assigned order
3. view-number: identifies primary in configuration list

4. status: normal or in a view-change

15

View change protocol (F=1)

Start-View- : Do-View- : Start-
. (1) ++view# Change | Change | View
B (New Primary) View# | ":
C } l
" ' Time 2>

1. B notices A has failed, sends Start-View-Change
2. C replies Do-View-Change to new primary, with its log
3. B waits for freplies, then sends Start-View

4. On receipt of Start-View, C replays log, accepts new ops

16

View change protocol: Correctness (=1

. Execute
A (Old Primary) Y Start-View- Do-View- Start.
_ Change Change View
B (New Primary) Qiew# / O \og
C log
PrepareOK

Time 2
Executed request,

previous view

* Old primary A must have received one or two PrepareOK
replies for that request (why?)

* Requestisin B’s or C's log (or both): so it will survive
Into new view

17

Principle: Quorums F=1)

----- ‘
——————
sz [0ee
ooe 00O
X0
------ - -— - I
90 @:
1 1 1
VS et cetera...

* Any group of f+ 1 replicas is called a quorum

* Quorum intersection property: Two quorums in
2f + 1 replicas must intersect at at least one replica

18

Applying the quorum principle

Normal Operation:

* Quorum that processes one request: Q1
— ...and 2" request: Q2

Q1 N Q2 has at least one replica 2>
— Second request reads first request’s effects

19

Applying the quorum principle

View Change:

* Quorum processes previous (committed) request: Q1
— ...and that processes Start-View-Change: Q2

« Q1 N Q2 has at least one replica 2>
— View Change contains committed request

20

Split Brain (not all protocol messages shown)

Request Request

Client 1
\ *Execute \ ‘;\{Execute

A (Primary)

Network partition

‘A,Execute *Execute

B (New Pri
- (New rm;?:x? _(x‘ /\ Start-View

Request | Request
Client 2 :

 What's undesirable about this sequence of events?

« Why won't this ever happen? What happens instead?

21

Today

1. More primary-backup replication

2. View changes
— With Viewstamped Replication
— Using a View Server
— Failure detection

3. Reconfiguration

22

A
Would centralization simplify design? I

* Asingle View Server could decide who is primary
— Clients and servers depend on view server
* Don’t decide on their own (might not agree)

* (Goal in designing the VS:

— Only want one primary at a time for correct state
machine replication

23

A
View Server protocol operation I

 For now, assume VS never fails

« Each replica now periodically pings the VS
— VS declares replica dead if missed N pings in a row
— Considers replica alive after a single ping received

* Problem: Replica can be alive but because of
network connectivity, be declared “dead”

24

View Server: Split Brain

Client

One possibility: S, in old view

=)

View Server

§

: s,
2.5, q P
y 25
E

N

/

Client

26

Also possible: S, in new view

f

Client

27

Split Brain and view changes

Take-away points:

Split Brain problem can be avoided both:

— In a decentralized design (VR)
— With centralized control (VS)

But protocol must be designed carefully so that
replica state does not diverge

28

Today

1. More primary-backup replication

2. View changes
— With Viewstamped Replication
— Using a View Server
— Failure detection

3. Reconfiguration

29

Failure detection

Both crashes and network failures are frequent: the
“‘common case”

Q: How does one replica estimate whether another
has crashed, or is still alive?

* A: Failure detecftion algorithm
— So far, we’ve seen Viewstamped Replication e.g.:

» Replicas listen for Prepare or Commit
messages from the Primary

 Declare primary failed when hear none for
some period of time

30

Failure detection: Goals

« Completeness: Each failure is detected
* Accuracy: There is no mistaken detection
« Speed: Time to first detection of a failure
« Scale (if significant in system context):

— Equal processing load on each node
— Equal network message load

31

Centralized versus Gossip

X exis alive.”)

5
“B&X _
are alive.” |

Centralized Gossip

 C thinks X is dead Overcomes failure

32

Today

1. More primary-backup replication
2. View changes

3. Reconfiguration

33

The need for reconfiguration

What if we want to replace a faulty replica with a
different machine?

— For example, one of the backups may fail

What if we want to change the replica group size?
— Decommission a replica
— Add another replica (increase f, possibly)

* Protocol that handles these possibilities is called the
reconfiguration protocol

34

Replica state (for reconfiguration)

1.

2.

3.

configuration: sorted identities of all 2f + 1 replicas
In-memory log with clients’ requests in assigned order
view-number: identifies primary in configuration list
status: normal or in a view-change

epoch-number: indexes configurations

35

Reconfiguration (1) (F=1)

Reconﬁguration= Prepare PrepareOK

B

Client i
new-config\

C (remove)

D (add)

Time 2

A (Primary)
* Primary immediately stops accepting new requests

36

Reconfiguration (2) (F=1)

Reconfiguration 1 Reply
Client [
new-config\ :
A (Primary) S
g2 |
B o |
ool l
Ao
C (remove) o —:
D (add) {

* Primary immediately stops accepting new requests

* No up-call executing this request

Time 2

37

Reconfiguration (3) (F=1)

Reconfiguration Reply

Client :
. new-conflg\ - StartEpoch
A (Primary) “J%
B o &
o % Commit

C (remove) R
D (add)

Time 2

* Primary sends Commit messages to old replicas

* Primary sends StartEpoch message to new replica(s)

38

Reconfiguration in new group {A, B, D}

Reconfiguration Reply : EpochStarted

Client : I
. new-conflg\ > StartEpoch I
A (Primary) SO :
c 2 l
B Q. © i

o % Commlk I \\

C (remove) T I f

|
D (add) !

Time 2

1. Update state with new epoch-number
2. Fetch state from old replicas, update log
3. Send EpochStarted msgs to replicas being removed

39

Reconfiguration at replaced replicas {C}

Reconfiguration Reply EpochStarted

A (Primary)

Client :
new-conflg\ / StartEpoch
Commi

\

Prepare,
PrepareOK

C (remove

Im

‘% \
D (add)

f

1. Respond to state transfer requests from others

Time 2

2. Send StartIIEEpoch messages to new replicas if they
don’t hear EpochStarted (not shown above)

40

Shutting down old replicas

If admin doesn’t wait for reconfiguration to complete,
may cause > f failures in old group

Can’t shut down replicas on receiving Reply at client

Fix: A new type of request CheckEpoch to report the
current epoch, goes thru normal request processing

41

Conclusion: What’s useful when

* Primary fails or has network connectivity problems?
* Majority partitioned from primary?

- Rapidly execute view change

* Replica permanently fails or is removed?
* Replica added?

-> Administrator initiates reconfiguration protocol

42

Next topic:
Consensus and Paxos

43

