
Putting it all together for SMR:
Two-Phase Commit, Leader Election

RAFT

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.
RAFT slides heavily based on those from Diego Ongaro and John Ousterhout.

CS 240: Computing Systems and Concurrency
Lecture 13

Marco Canini

• Mechanism: Replicate and separate servers

• Goal #1: Provide a highly reliable service

• Goal #2: Servers should behave just like a
single, more reliable server

Recall: Primary-Backup

2

Extend PB for high availability

Client C

Primary P

Backup A

• Primary gets ops, orders into log

• Replicates log of ops to backup

• Backup executes ops in same order

• Backup takes over if primary fails

• But what if network partition rather
than primary failure?
– “View” server to determine primary
– But what if view server fails?

• “View” determined via consensus!
3

Extend PB for high availability

Client C

Primary P

Backup A B

1. C à P: “request <op>”

2. P àA, B: “prepare <op>”

3. A, B àP: “prepared” or “error”

4. P àC: “result exec<op>” or “failed”

5. P àA, B: “commit <op>”

“Okay” (i.e., op is stable) if
written to > ½ backups

4

View changes on failure

Primary P

Backup A B

1. Backups monitor primary

2. If a backup thinks primary failed,
initiate View Change (leader election)

5

View changes on failure

Primary PBackup A

1. Backups monitor primary

2. If a backup thinks primary failed,
initiate View Change (leader election)

3. Intuitive safety argument:
– View change requires f+1 agreement
– Op committed once written to f+1 nodes
– At least one node both saw write and in

new view

4. More advanced: Adding or removing
nodes (“reconfiguration”)

Requires 2f + 1 nodes
to handle f failures

6

Basic fault-tolerant
Replicated State Machine (RSM)

approach

1. Consensus protocol to elect leader

2. 2PC to replicate operations from leader

3. All replicas execute ops once committed

7

Why bother with a leader?

Not necessary, but …

• Decomposition: normal operation vs. leader changes

• Simplifies normal operation (no conflicts)

• More efficient than leader-less approaches

• Obvious place to handle non-determinism

8

Raft: A Consensus Algorithm
for Replicated Logs

Diego Ongaro and John Ousterhout

Stanford University

9

• Replicated log => replicated state machine
– All servers execute same commands in same order

• Consensus module ensures proper log replication

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients
shl

10

1. Leader election

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

6. Reconfiguration
11

Raft Overview

• At any given time, each server is either:

– Leader: handles all client interactions, log replication
– Follower: completely passive
– Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

12

Server States

Follower Candidate Leader

13

Liveness Validation

Follower Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

timeout,
new election

discover server with
higher termdiscover current leader

or higher term

“step
down”

• Servers start as followers

• Leaders send heartbeats (empty AppendEntries RPCs) to
maintain authority

• If electionTimeout elapses with no RPCs (100-500ms),
follower assumes leader has crashed and starts new election

14

Terms (aka epochs)

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

• Time divided into terms
� Election (either failed or resulted in 1 leader)
� Normal operation under a single leader

• Each server maintains current term value

• Key role of terms: identify obsolete information

15

Elections
• Start election:

� Increment current term, change to candidate state, vote for self

• Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:

• Become leader

• Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:

• Return to follower state

3. No-one wins election (election timeout elapses):

• Increment term, start new election

16

Elections

Servers

Voted for
candidate A

B can’t also
get majority

• Safety: allow at most one winner per term
� Each server votes only once per term (persists on disk)
� Two different candidates can’t get majorities in same term

• Liveness: some candidate must eventually win
� Each choose election timeouts randomly in [T, 2T]
� One usually initiates and wins election before others start
� Works well if T >> network RTT

17

Log Structure

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

• Log entry = < index, term, command >
• Log stored on stable storage (disk); survives crashes

• Entry committed if known to be stored on majority of servers
� Durable / stable, will eventually be executed by state machines

18

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to followers

• Once new entry committed:
– Leader passes command to its state machine, sends result to client
– Leader piggybacks commitment to followers in later AppendEntries
– Followers pass committed commands to their state machines

• Crashed / slow followers?
– Leader retries RPCs until they succeed

• Performance is optimal in common case:
– One successful RPC to any majority of servers

19

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

20

Log Operation: Highly Coherent

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1

ret
2

mov
3

div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

server1

server2

• If log entries on different server have same index and term:

� Store the same command
� Logs are identical in all preceding entries

• If given entry is committed, all preceding also committed

• AppendEntries has <index,term> of entry preceding new ones

• Follower must contain matching entry; otherwise it rejects

• Implements an induction step, ensures coherency

21

Log Operation: Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching entry

AppendEntries fails:
mismatch

• New leader’s log is truth, no special steps, start normal operation

– Will eventually make follower’s logs identical to leader’s

– Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries

22

Leader Changes

1 2 3 4 5 6 7log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5

• Raft safety property: If leader has decided log entry is
committed, entry will be present in logs of all future leaders

• Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs

2. Only entries in leader’s log can be committed

3. Entries must be committed before applying to state machine

23

Safety Requirement

Committed → Present in future leaders’ logs
Restrictions on

commitment
Restrictions on
leader election

Once log entry applied to a state machine, no other state
machine must apply a different value for that log entry

24

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 Unavailable during
leader transition

Committed?
Can’t tell

which entries
committed!

s1

s2

• Elect candidate most likely to contain all committed entries

� In RequestVote, candidates incl. index + term of last log entry

� Voter V denies vote if its log is “more complete”:
(newer term) or (entry in higher index of same term)

� Leader will have “most complete” log among electing majority

25

Committing Entry from Current Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2 Can’t be elected as
leader for term 3

AppendEntries just succeeded

Leader for term 2

• Case #1: Leader decides entry in current term is committed

• Safe: leader for term 3 must contain entry 4

26

Committing Entry from Earlier Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

AppendEntries just succeeded

Leader for term 4

3

• Case #2: Leader trying to finish committing entry from earlier

• Entry 3 not safely committed:
� s5 can be elected as leader for term 5 (how?)
� If elected, it will overwrite entry 3 on s1, s2, and s3

27

New Commitment Rules
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

4

4

3

Leader for term 4

• For leader to decide entry is committed:
1. Entry stored on a majority
2. ≥ 1 new entry from leader’s term also on majority

• Example; Once e4 committed, s5 cannot be elected leader
for term 5, and e3 and e4 both safe

Leader changes can result in log inconsistencies
28

Challenge: Log Inconsistencies

1 41 1 4 5 5 6 6 6Leader for term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

Possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Missing
Entries

Extraneous
Entries

1 2 3 4 5 6 7 8 9 10 11 12

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1
Followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• New leader must make follower logs consistent with its own
� Delete extraneous entries
� Fill in missing entries

• Leader keeps nextIndex for each follower:
� Index of next log entry to send to that follower
� Initialized to (1 + leader’s last index)

• If AppendEntries consistency check fails, decrement nextIndex, try again

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1Before repair 2 2 33 3 3 32

(a)

(f)

1 1 1 4(f)

nextIndex

After repair

31

Neutralizing Old Leaders
Leader temporarily disconnected

→ other servers elect new leader
→ old leader reconnected

→ old leader attempts to commit log entries

• Terms used to detect stale leaders (and candidates)
� Every RPC contains term of sender
� Sender’s term < receiver:

• Receiver: Rejects RPC (via ACK which sender processes…)
� Receiver’s term < sender:

• Receiver reverts to follower, updates term, processes RPC

• Election updates terms of majority of servers
� Deposed server cannot commit new log entries

32

Client Protocol
• Send commands to leader

� If leader unknown, contact any server, which redirects client to leader

• Leader only responds after command logged,
committed, and executed by leader

• If request times out (e.g., leader crashes):
� Client reissues command to new leader (after possible redirect)

• Ensure exactly-once semantics even with leader failures
� E.g., Leader can execute command then crash before responding
� Client should embed unique ID in each command
� This client ID included in log entry
� Before accepting request, leader checks log for entry with same id

Reconfiguration

33

34

Configuration Changes

Cold Cnew
Server 1
Server 2
Server 3
Server 4
Server 5

time

Majority of Cold

Majority of Cnew

• View configuration: { leader, { members }, settings }
• Consensus must support changes to configuration

� Replace failed machine
� Change degree of replication

• Cannot switch directly from one config to another:
conflicting majorities could arise

35

2-Phase Approach via Joint Consensus

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

• Joint consensus in intermediate phase: need majority of
both old and new configurations for elections, commitment

• Configuration change just a log entry; applied immediately
on receipt (committed or not)

• Once joint consensus is committed, begin replicating log
entry for final configuration

36

2-Phase Approach via Joint Consensus

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

leader not in Cnew
steps down here

• Any server from either configuration can serve as leader

• If leader not in Cnew, must step down once Cnew committed

Viewstamped Replication:

A new primary copy method to support
highly-available distributed systems

Oki and Liskov, PODC 1988

37

• Strong leader
– Log entries flow only from leader to other servers

– Select leader from limited set so doesn’t need to “catch up”

• Leader election
– Randomized timers to initiate elections

• Membership changes
– New joint consensus approach with overlapping majorities
– Cluster can operate normally during configuration changes

38

Raft vs. VR

