
Strong Consistency & CAP Theorem

CS 240: Computing Systems and Concurrency
Lecture 15

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

2

2PC / Consensus

Paxos / Raft

Eventual consistency

Dynamo

Consistency models

• Fault-tolerance / durability: Don’t lose operations

• Consistency: Ordering between (visible) operations

Consistency in Paxos/Raft

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

• Let’s say A and B send an op.
• All readers see A → B ?
• All readers see B → A ?
• Some see A → B and others B → A ?

Correct consistency model?

BA

• Provide behavior of a single copy of object:
– Read should return the most recent write

– Subsequent reads should return same value, until next write

• Telephone intuition:
1. Alice updates Facebook post

2. Alice calls Bob on phone: “Check my Facebook post!”

3. Bob read’s Alice’s wall, sees her post

5

Paxos/RAFT has strong consistency

6

Strong Consistency?

write(A,1)

1

success

read(A)

Phone call: Ensures happens-before relationship,
even through “out-of-band” communication

7

Strong Consistency?

write(A,1)

1

success

read(A)

One cool trick: Delay responding to writes/ops
until properly committed

8

Strong Consistency? This is buggy!

write(A,1)

success

committed

• Isn’t sufficient to return value of third node:
It doesn’t know precisely when op is “globally” committed

• Instead: Need to actually order read operation

1

read(A)

9

Strong Consistency!

write(A,1)

success

1

read(A)

Order all operations via (1) leader, (2) consensus

• Linearizability (Herlihy and Wang 1991)

1. All servers execute all ops in some identical sequential order

2. Global ordering preserves each client’s own local ordering

3. Global ordering preserves real-time guarantee
• All ops receive global time-stamp using a sync’d clock
• If tsop1(x) < tsop2(y), OP1(x) precedes OP2(y) in sequence

Strong consistency = linearizability

• Once write completes, all later reads (by wall-clock start time)
should return value of that write or value of later write.

• Once read returns particular value, all later reads should return
that value or value of later write.

11

Intuition: Real-time ordering

write(A,1)

success

committed

1

read(A)

• Once write completes, all later reads (by wall-clock start time)
should return value of that write or value of later write.

• Once read returns particular value, all later reads should return
that value or value of later write.

• Sequential = Linearizability – real-time ordering
1. All servers execute all ops in some identical sequential order

2. Global ordering preserves each client’s own local ordering

Weaker: Sequential consistency

• With concurrent ops, “reordering” of ops (w.r.t. real-time ordering)
acceptable, but all servers must see same order

– e.g., linearizability cares about time
sequential consistency cares about program order

13

Sequential Consistency

write(A,1)

success

read(A)

In example, system orders read(A) before write(A,1)

0

Valid Sequential Consistency?

ü x
• Why? Because P3 and P4 don’t agree on order of ops.

Doesn’t matter when events took place on diff machine,
as long as proc’s AGREE on order.

• What if P1 did both W(x)a and W(x)b?

� Neither valid, as (a) doesn’t preserve local ordering

15

2PC / Consensus

Paxos / Raft

Eventual consistency

Dynamo

Tradeoffs are fundamental?

• From keynote lecture by Eric Brewer (2000)
– History: Eric started Inktomi, early Internet search site based

around “commodity” clusters of computers

– Using CAP to justify “BASE” model: Basically Available, Soft-
state services with Eventual consistency

• Popular interpretation: 2-out-of-3
– Consistency (Linearizability)

– Availability

– Partition Tolerance: Arbitrary crash/network failures
16

“CAP” Conjection for Distributed Systems

Gilbert, Seth, and Nancy Lynch. "Brewer's conjecture and the feasibility of consistent, available,
partition-tolerant web services." ACM SIGACT News 33.2 (2002): 51-59. 17

CAP Theorem: Proof

Not
consistent

18

CAP Theorem: Proof

Not
available

Gilbert, Seth, and Nancy Lynch. "Brewer's conjecture and the feasibility of consistent, available,
partition-tolerant web services." ACM SIGACT News 33.2 (2002): 51-59.

19

CAP Theorem: Proof

Not
partition
tolerant

Gilbert, Seth, and Nancy Lynch. "Brewer's conjecture and the feasibility of consistent, available,
partition-tolerant web services." ACM SIGACT News 33.2 (2002): 51-59.

20

CAP Theorem: AP or CP

Not
partition
tolerant

Criticism: It’s not 2-out-of-3
• Can’t “choose” no partitions

• So: AP or CP

More tradeoffs L vs. C

• Low-latency: Speak to fewer than quorum of nodes?

– 2PC: write N, read 1

– RAFT: write ⌊N/2⌋ + 1, read ⌊N/2⌋ + 1

– General: |W| + |R| > N

• L and C are fundamentally at odds

– “C” = linearizability, sequential, serializability (more later)

21

PACELC
• If there is a partition (P):

– How does system tradeoff A and C?

• Else (no partition)
– How does system tradeoff L and C?

• Is there a useful system that switches?
– Dynamo: PA/EL

– “ACID” dbs: PC/EC

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
22

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

More linearizable

replication algorithms

23

Chain replication

• Writes to head, which orders all writes
• When write reaches tail, implicitly committed rest of chain
• Reads to tail, which orders reads w.r.t. committed writes

Chain replication for read-heavy (CRAQ)

• Goal: If all replicas have same version, read from any one

• Challenge: They need to know they have correct version

Chain replication for read-heavy (CRAQ)

• Replicas maintain multiple versions of objects while “dirty”,
i.e., contain uncommitted writes

• Commitment sent “up” chain after reaches tail

Chain replication for read-heavy (CRAQ)

• Read to dirty object must check with tail for proper version

• This orders read with respect to global order, regardless of
replica that handles

28

Performance: CR vs. CRAQ

0 20 40 60 80 100

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

Writes/s

R
e
a
d
s
/s

CRAQ!7

CRAQ!3

CR!3

1x-

3x-

7x-

R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput and availability. OSDI 2004.

J. Terrace and M. Freedman. Object Storage on CRAQ: High-throughput chain replication for read-mostly workloads. USENIX ATC 2009.

