
Causal Consistency

and Two-Phase Commit

CS 240: Computing Systems and Concurrency
Lecture 16

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

2

Linearizability Eventual

Consistency models

Sequential

Causal

• Lamport clocks: C(a) < C(z) Conclusion: None

• Vector clocks: V(a) < V(z) Conclusion: a → … → z

• Distributed bulletin board application

– Each post gets sent to all other users

– Consistency goal: No user to see reply before the
corresponding original message post

– Conclusion: Deliver message only after all messages that
causally precede it have been delivered

3

Recall use of logical clocks (lec 5)

Causal Consistency

1. Writes that are potentially
causally related must be seen
by all machines in same order.

2. Concurrent writes may be
seen in a different order on
different machines.

• Concurrent: Ops not causally related

Causal Consistency

P1

a
b

d

P2 P3

Physical time ↓

e

f

g

c

1. Writes that are potentially
causally related must be seen
by all machines in same order.

2. Concurrent writes may be
seen in a different order on
different machines.

• Concurrent: Ops not causally related

Causal Consistency

P1

a
b

d

P2 P3

e

f

g

c

Operations

a, b

b, f

c, f

e, f

e, g

a, c

a, e

Concurrent?

N

Y

Y

Y

N

Y

N
Physical time ↓

Causal Consistency

P1

a
b

d

P2 P3

e

f

g

c

Operations

a, b

b, f

c, f

e, f

e, g

a, c

a, e

Concurrent?

N

Y

Y

Y

N

Y

N
Physical time ↓

Causal Consistency: Quiz

• Valid under causal consistency

• Why? W(x)b and W(x)c are concurrent
– So all processes don’t (need to) see them in same order

• P3 and P4 read the values ‘a’ and ‘b’ in order as
potentially causally related. No ‘causality’ for ‘c’.

Sequential Consistency: Quiz

• Invalid under sequential consistency

• Why? P3 and P4 see b and c in different order

• But fine for causal consistency
– B and C are not causally dependent

– Write after write has no dep’s, write after read does

Causal Consistency

ü
x

A: Violation: W(x)b is potentially dep on W(x)a

B: Correct. P2 doesn’t read value of a before W

Causal consistency within
replication systems

11

• Linearizability / sequential: Eager replication

• Trades off low-latency for consistency

12

Implications of laziness on consistency

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

• Causal consistency: Lazy replication

• Trades off consistency for low-latency

• Maintain local ordering when replicating

• Operations may be lost if failure before replication 13

Implications of laziness on consistency

add jmp mov shl
Log

State
Machine

add jmp mov shl
Log

State
Machine

add jmp mov shl
Log

State
Machine

shl

Two-phase commit

14

send_money(A, B, amount) {

Begin_Transaction();

if (A.balance - amount >= 0) {

A.balance = A.balance - amount;

B.balance = B.balance + amount;

Commit_Transaction();

} else {

Abort_Transaction();

}

}

15

Motivation: sending money

16

Single-server: ACID
• Atomicity: all parts of the transaction execute or none

(A’s decreases and B’s balance increases)

• Consistency: the transaction only commits if it preserves
invariants (A’s balance never goes below 0)

• Isolation: the transaction executes as if it executed by
itself (even if C is accessing A’s account, that will not
interfere with this transaction)

• Durability: the transaction’s effects are not lost after it
executes (updates to the balances will remain forever)

17

Distributed transactions?

• Partition databases across multiple machines for
scalability (A and B might not share a server)

• A transaction might touch more than one partition

• How do we guarantee that all of the partitions
commit the transactions or none commit the
transactions?

• Goal: General purpose, distributed agreement on some
action, with failures
– Different entities play different roles in the action

• Running example: Transfer money from A to B
– Debit at A, credit at B, tell the client “okay”
– Require both banks to do it, or neither
– Require that one bank never act alone

• This is an all-or-nothing atomic commit protocol
– Later will discuss how to make it before-or-after atomic

18

Two-Phase Commit (2PC)

1. C à TC: “go!”

Straw Man protocol

Client C

Transaction
Coordinator TC

Bank

go!

A B

1. C à TC: “go!”

2. TC à A: “debit $20!”
TC à B: “credit $20!”
TC à C: “okay”

• A, B perform actions on receipt of
messages

Straw Man protocol

Client C

Transaction
Coordinator TC

Bank

go!

de
bit

 $2
0!

credit $20!

A B

okay

What could possibly go wrong?

1. Not enough money in A’s bank account?

2. B’s bank account no longer exists?

3. A or B crashes before receiving message?

4. The best-effort network to B fails?

5. TC crashes after it sends debit to A but before sending
to B?

21

Reasoning about the Straw Man protocol

• Note that TC, A, and B each have a notion of committing

• We want two properties:

1. Safety
– If one commits, no one aborts
– If one aborts, no one commits

2. Liveness
– If no failures and A and B can commit, action commits
– If failures, reach a conclusion ASAP

22

Safety versus liveness

1. C à TC: “go!”

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank

go!

A B

1. C à TC: “go!”

2. TC à A, B: “prepare!”

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank

prepare! prepare!

A B

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank A B

ye
s yes

commit! commit!

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank A B

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

5. TC àC: “okay” or “failed”

• A, B commit on receipt of commit
message

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank A B

okay

• Why is this correct?
– Neither can commit unless both agreed to commit

• What about performance?
1. Timeout: I’m up, but didn’t receive a message I

expected
• Maybe other node crashed, maybe network broken

2. Reboot: Node crashed, is rebooting, must clean
up

28

Reasoning about atomic commit

Where do hosts wait for messages?

1. TC waits for “yes” or “no” from A and B
– TC hasn’t yet sent any commit messages, so can safely abort after a

timeout
– But this is conservative: might be network problem

• We’ve preserved correctness, sacrificed performance

2. A and B wait for “commit” or “abort” from TC
– If it sent a no, it can safely abort (why?)
– If it sent a yes, can it unilaterally abort?
– Can it unilaterally commit?
– A, B could wait forever, but there is an alternative…

29

Timeouts in atomic commit

• Consider Server B (Server A case is symmetric) waiting for commit or
abort from TC
– Assume B voted yes (else, unilateral abort possible)

• B à A: “status?” A then replies back to B. Four cases:
1. (No reply from A): no decision, B waits for TC
2. Server A received commit or abort from TC: Agree with the TC’s

decision
3. Server A hasn’t voted yet or voted no: both abort

• TC can’t have decided to commit

4. Server A voted yes: both must wait for the TC
• TC decided to commit if both replies received
• TC decided to abort if it timed out

30

Server termination protocol

• What are the liveness and safety properties?
– Safety: if servers don’t crash and network between A and B is

reliable, all processes reach the same decision (in a finite number
of steps)

– Liveness: if failures are eventually repaired, then every
participant will eventually reach a decision

• Can resolve some timeout situations with guaranteed correctness

• Sometimes however A and B must block
– Due to failure of the TC or network to the TC

• But what will happen if TC, A, or B crash and reboot?

31

Reasoning about the server
termination protocol

• Can’t back out of commit if already decided
– TC crashes just after sending “commit!”

– A or B crash just after sending “yes”

• If all nodes knew their state before crash, we
could use the termination protocol…
– Use write-ahead log to record “commit!” and “yes”

to disk

32

How to handle crash and reboot?

• If everyone rebooted and is reachable, TC can just check
for commit record on disk and resend action

• TC: If no commit record on disk, abort
– You didn’t send any “commit!”messages

• A, B: If no yes record on disk, abort
– You didn’t vote “yes” so TC couldn’t have committed

• A, B: If yes record on disk, execute termination protocol
– This might block

33

Recovery protocol with non-volatile state

• This recovery protocol with non-volatile logging is
called Two-Phase Commit (2PC)

• Safety: All hosts that decide reach the same decision
– No commit unless everyone says “yes”

• Liveness: If no failures and all say “yes” then commit
– But if failures then 2PC might block
– TC must be up to decide

• Doesn’t tolerate faults well: must wait for repair

34

Two-Phase Commit

Next topic
Concurrency Control

35

