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Serializability

Execution of a set of transactions 
over multiple items is equivalent 
to some serial execution of txns
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• Big Global Lock:  Results in a serial transaction 
schedule at the cost of performance

• Two-phase locking with finer-grain locks:
– Growing phase when txn acquires locks

– Shrinking phase when txn releases locks (typically commit)

– Allows txn to execute concurrently, improving performance
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Lock-based concurrency control



Q:  What if access patterns 
rarely, if ever, conflict?
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• Goal:   Low overhead for non-conflicting txns

• Assume success!
– Process transaction as if it would succeed
– Check for serializability only at commit time
– If fails, abort transaction

• Optimistic Concurrency Control (OCC) 
– Higher performance when few conflicts vs. locking
– Lower performance when many conflicts vs. locking
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Be optimistic!



• Begin:  Record timestamp marking the transaction’s beginning

• Modify phase
– Txn can read values of committed data items
– Updates only to local copies (versions) of items (in DB cache)

• Validate phase

• Commit phase
– If validates, transaction’s updates applied to DB
– Otherwise, transaction restarted
– Care must be taken to avoid “TOCTTOU” issues
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OCC:  Three-phase approach
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OCC:  Why validation is necessary

txn
coord O

Q

P
When commits txn updates,

create new versions at 
some timestamp t

• New txn creates shadow 
copies of P and Q

• P and Q’s copies at 
inconsistent state

txn
coord



• Transaction is about to commit.  System must ensure:

– Initial consistency: Versions of accessed objects at start consistent
– No conflicting concurrency:  No other txn has committed an operation 

at object that conflicts with one of this txn’s invocations

• Consider transaction 1.  For all other txns N either committed or in 
validation phase, one of the following holds:
A. N completes commit before 1 starts modify
B. 1 starts commit after N completes commit,                                           

and ReadSet 1 and WriteSet N are disjoint 
C. Both ReadSet 1 and WriteSet 1 are disjoint from WriteSet N,              

and N completes modify phase. 

• When validating 1, first check (A), then (B), then (C).                              
If all fail, validation fails and 1 aborted. 8

OCC:  Validate Phase



• Provides semantics as if only one transaction was 
running on DB at time, in serial order

+ Real-time guarantees

• 2PL:  Pessimistically get all the locks first

• OCC:  Optimistically create copies, but then 
recheck all read + written items before commit
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2PL & OCC = strict serialization



Multi-version            
concurrency control

Generalize use of multiple versions of objects
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• Maintain multiple versions of objects, each with own 
timestamp.  Allocate correct version to reads.

• Prior example of MVCC:
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Multi-version concurrency control



• Maintain multiple versions of objects, each with own 
timestamp.  Allocate correct version to reads.

• Unlike 2PL/OCC, reads never rejected

• Occasionally run garbage collection to clean up
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Multi-version concurrency control



• Split transaction into read set and write set
– All reads execute as if one “snapshot”
– All writes execute as if one later “snapshot”

• Yields snapshot isolation  <  serializability
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MVCC Intuition



• Intuition:  Bag of marbles:  ½ white, ½ black

• Transactions:
– T1:  Change all white marbles to black marbles
– T2:  Change all black marbles to white marbles

• Serializability (2PL, OCC) 
– T1 → T2   or   T2 → T1
– In either case, bag is either ALL white or ALL black

• Snapshot isolation (MVCC)
– T1 → T2 or   T2 → T1    or    T1 || T2
– Bag is ALL white, ALL black, or ½ white ½ black
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Serializability vs. Snapshot isolation



Distributed Transactions
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Consider partitioned data over servers
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• Why not just use 2PL?
– Grab locks over entire read and write set

– Perform writes

– Release locks (at commit time)
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Consider partitioned data over servers
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• How do you get serializability?

– On single machine, single COMMIT op in the WAL

– In distributed setting, assign global timestamp to txn
(at sometime after lock acquisition and before commit)

• Centralized txn manager 
• Distributed consensus on timestamp (not all ops)
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Strawman:  Consensus per txn group?
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• Single Lamport clock, consensus per group?
– Linearizability composes!
– But doesn’t solve concurrent, non-overlapping txn problem



Spanner: Google’s Globally-
Distributed Database

OSDI 2012
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• Dozens of zones (datacenters)

• Per zone, 100-1000s of servers

• Per server, 100-1000 partitions (tablets)

• Every tablet replicated for fault-tolerance (e.g., 5x)
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Google’s Setting
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Scale-out vs. fault tolerance
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• Every tablet replicated via Paxos (with leader election)

• So every “operation” within transactions across tablets 
actually a replicated  operation within Paxos RSM

• Paxos groups can stretch across datacenters!



Disruptive idea:

Do clocks really need to be                
arbitrarily unsynchronized?

Can you engineer some max divergence?

32



• “Global wall-clock time” with bounded uncertainty

time

earliest latest

TT.now()

2*ε

33

TrueTime

Consider event enow which invoked tt = TT.new():
Guarantee:  tt.earliest <= tabs(enow) <= tt.latest



Timestamps and TrueTime

T

Pick s > TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

average ε

Commit wait

average ε
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Commit Wait and Replication

T

Acquired locks

Start 
consensus

Notify 
followers

Commit wait donePick s
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Achieve 
consensus

Release locks



Client:

1. Issues reads to leader of each tablet group,                     
which acquires read locks and returns most recent data

2. Locally performs writes

3. Chooses coordinator from set of leaders, initiates commit

4. Sends commit message to each leader,                         
include identify of coordinator and buffered writes

5. Waits for commit from coordinator
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Client-driven transactions



• On commit msg from client, leaders acquire local write locks

– If non-coordinator:
• Choose prepare ts > previous local timestamps
• Log prepare record through Paxos
• Notify coordinator of prepare timestamp

– If coordinator:
• Wait until hear from other participants
• Choose commit timestamp  >= prepare ts, > local ts
• Logs commit record through Paxos
• Wait commit-wait period
• Sends commit timestamp to replicas, other leaders, client

• All apply at commit timestamp and release locks
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Commit Wait and 2-Phase Commit



Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2
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Start logging Done logging

Prepared

Release locks

Acquired locks Release locks

Acquired locks Release locks

Notify participants sc

Commit wait doneCompute sp for each

Compute overall sc

Committed

Send sp



Example
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TP

Remove X 
from friend list

Remove myself 
from X’s friend list

sp= 6

sp= 8

sc= 8 s = 15

Risky post P

sc= 8

Time <8
[X]

[me]

15

TC T2

[P]
My friends
My posts
X’s friends

8
[]

[]



• Given global timestamp, can implement read-only 
transactions lock-free (snapshot isolation)

• Step 1:  Choose timestamp sread = TT.now.latest()

• Step 2: Snapshot read (at sread) to each tablet
– Can be served by any up-to-date replica
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Read-only optimizations



Disruptive idea:

Do clocks really need to be                
arbitrarily unsynchronized?

Can you engineer some max divergence?
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TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS 
timemaster

GPS 
timemaster

GPS 
timemaster

Atomic-clock 
timemaster

GPS 
timemaster

Client
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GPS 
timemaster

Compute reference [earliest, latest]   =   now ± ε



time

ε

0sec 30sec 60sec 90sec

+6ms

now =  reference now + local-clock offset

ε =  reference ε + worst-case local-clock drift

=  1ms +  200 μs/sec
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TrueTime implementation

• What about faulty clocks?  

– Bad CPUs 6x more likely in 1 year of empirical data



Known unknowns > unknown unknowns

Rethink algorithms to reason about 
uncertainty
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Next topic:
Virtualization and Cloud Computing
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