
Concurrency Control II

and Distributed Transactions

CS 240: Computing Systems and Concurrency
Lecture 18

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Serializability

Execution of a set of transactions
over multiple items is equivalent
to some serial execution of txns

2

• Big Global Lock: Results in a serial transaction
schedule at the cost of performance

• Two-phase locking with finer-grain locks:
– Growing phase when txn acquires locks

– Shrinking phase when txn releases locks (typically commit)

– Allows txn to execute concurrently, improving performance

3

Lock-based concurrency control

Q: What if access patterns
rarely, if ever, conflict?

4

• Goal: Low overhead for non-conflicting txns

• Assume success!
– Process transaction as if it would succeed
– Check for serializability only at commit time
– If fails, abort transaction

• Optimistic Concurrency Control (OCC)
– Higher performance when few conflicts vs. locking
– Lower performance when many conflicts vs. locking

5

Be optimistic!

• Begin: Record timestamp marking the transaction’s beginning

• Modify phase
– Txn can read values of committed data items
– Updates only to local copies (versions) of items (in DB cache)

• Validate phase

• Commit phase
– If validates, transaction’s updates applied to DB
– Otherwise, transaction restarted
– Care must be taken to avoid “TOCTTOU” issues

6

OCC: Three-phase approach

7

OCC: Why validation is necessary

txn
coord O

Q

P
When commits txn updates,

create new versions at
some timestamp t

• New txn creates shadow
copies of P and Q

• P and Q’s copies at
inconsistent state

txn
coord

• Transaction is about to commit. System must ensure:

– Initial consistency: Versions of accessed objects at start consistent
– No conflicting concurrency: No other txn has committed an operation

at object that conflicts with one of this txn’s invocations

• Consider transaction 1. For all other txns N either committed or in
validation phase, one of the following holds:
A. N completes commit before 1 starts modify
B. 1 starts commit after N completes commit,

and ReadSet 1 and WriteSet N are disjoint
C. Both ReadSet 1 and WriteSet 1 are disjoint from WriteSet N,

and N completes modify phase.

• When validating 1, first check (A), then (B), then (C).
If all fail, validation fails and 1 aborted. 8

OCC: Validate Phase

• Provides semantics as if only one transaction was
running on DB at time, in serial order

+ Real-time guarantees

• 2PL: Pessimistically get all the locks first

• OCC: Optimistically create copies, but then
recheck all read + written items before commit

9

2PL & OCC = strict serialization

Multi-version
concurrency control

Generalize use of multiple versions of objects

10

• Maintain multiple versions of objects, each with own
timestamp. Allocate correct version to reads.

• Prior example of MVCC:

11

Multi-version concurrency control

• Maintain multiple versions of objects, each with own
timestamp. Allocate correct version to reads.

• Unlike 2PL/OCC, reads never rejected

• Occasionally run garbage collection to clean up

12

Multi-version concurrency control

• Split transaction into read set and write set
– All reads execute as if one “snapshot”
– All writes execute as if one later “snapshot”

• Yields snapshot isolation < serializability

13

MVCC Intuition

• Intuition: Bag of marbles: ½ white, ½ black

• Transactions:
– T1: Change all white marbles to black marbles
– T2: Change all black marbles to white marbles

• Serializability (2PL, OCC)
– T1 → T2 or T2 → T1
– In either case, bag is either ALL white or ALL black

• Snapshot isolation (MVCC)
– T1 → T2 or T2 → T1 or T1 || T2
– Bag is ALL white, ALL black, or ½ white ½ black

14

Serializability vs. Snapshot isolation

Distributed Transactions

25

26

Consider partitioned data over servers

O

P

Q

• Why not just use 2PL?
– Grab locks over entire read and write set

– Perform writes

– Release locks (at commit time)

L

L

L

U

U

U

R

R W

W

27

Consider partitioned data over servers

O

P

Q

• How do you get serializability?

– On single machine, single COMMIT op in the WAL

– In distributed setting, assign global timestamp to txn
(at sometime after lock acquisition and before commit)

• Centralized txn manager
• Distributed consensus on timestamp (not all ops)

L

L

L

U

U

U

R

R W

W

28

Strawman: Consensus per txn group?

O

P

Q

L

L

L

U

U

U

R

R W

W

R

S

• Single Lamport clock, consensus per group?
– Linearizability composes!
– But doesn’t solve concurrent, non-overlapping txn problem

Spanner: Google’s Globally-
Distributed Database

OSDI 2012

29

• Dozens of zones (datacenters)

• Per zone, 100-1000s of servers

• Per server, 100-1000 partitions (tablets)

• Every tablet replicated for fault-tolerance (e.g., 5x)

30

Google’s Setting

31

Scale-out vs. fault tolerance

O

P

QQQ

PP

OO

• Every tablet replicated via Paxos (with leader election)

• So every “operation” within transactions across tablets
actually a replicated operation within Paxos RSM

• Paxos groups can stretch across datacenters!

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

32

• “Global wall-clock time” with bounded uncertainty

time

earliest latest

TT.now()

2*ε

33

TrueTime

Consider event enow which invoked tt = TT.new():
Guarantee: tt.earliest <= tabs(enow) <= tt.latest

Timestamps and TrueTime

T

Pick s > TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

average ε

Commit wait

average ε

34

Commit Wait and Replication

T

Acquired locks

Start
consensus

Notify
followers

Commit wait donePick s

35

Achieve
consensus

Release locks

Client:

1. Issues reads to leader of each tablet group,
which acquires read locks and returns most recent data

2. Locally performs writes

3. Chooses coordinator from set of leaders, initiates commit

4. Sends commit message to each leader,
include identify of coordinator and buffered writes

5. Waits for commit from coordinator

36

Client-driven transactions

• On commit msg from client, leaders acquire local write locks

– If non-coordinator:
• Choose prepare ts > previous local timestamps
• Log prepare record through Paxos
• Notify coordinator of prepare timestamp

– If coordinator:
• Wait until hear from other participants
• Choose commit timestamp >= prepare ts, > local ts
• Logs commit record through Paxos
• Wait commit-wait period
• Sends commit timestamp to replicas, other leaders, client

• All apply at commit timestamp and release locks
37

Commit Wait and 2-Phase Commit

Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2

38

Start logging Done logging

Prepared

Release locks

Acquired locks Release locks

Acquired locks Release locks

Notify participants sc

Commit wait doneCompute sp for each

Compute overall sc

Committed

Send sp

Example

39

TP

Remove X
from friend list

Remove myself
from X’s friend list

sp= 6

sp= 8

sc= 8 s = 15

Risky post P

sc= 8

Time <8
[X]

[me]

15

TC T2

[P]
My friends
My posts
X’s friends

8
[]

[]

• Given global timestamp, can implement read-only
transactions lock-free (snapshot isolation)

• Step 1: Choose timestamp sread = TT.now.latest()

• Step 2: Snapshot read (at sread) to each tablet
– Can be served by any up-to-date replica

40

Read-only optimizations

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

41

TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS
timemaster

GPS
timemaster

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Client

42

GPS
timemaster

Compute reference [earliest, latest] = now ± ε

time

ε

0sec 30sec 60sec 90sec

+6ms

now = reference now + local-clock offset

ε = reference ε + worst-case local-clock drift

= 1ms + 200 μs/sec

43

TrueTime implementation

• What about faulty clocks?

– Bad CPUs 6x more likely in 1 year of empirical data

Known unknowns > unknown unknowns

Rethink algorithms to reason about
uncertainty

44

Next topic:
Virtualization and Cloud Computing

45

