
Security

CS 240: Computing Systems and Concurrency
Lecture 19

Amedeo Sapio
Selected content adapted from M. Canini and D. Boneh.

1. Introdution to Computer Security

– What do we mean by security?

2. Introduction to Cryptography

– Symmetric-key crypto

– Public-key crypto

– Crypto hash functions

2

Today

Two factors:

• Lots of buggy software (and gullible users)

• Money can be made from finding and exploiting
vulnerabilities

1. Marketplace for vulnerabilities

2. Marketplace for owned machines (PPI)

3. Many methods to profit from owned client machines

The computer security problem

current state of computer security
3

keylog for banking passwords, web pwds., gaming pwds.

Example: SilentBanker (and many like it)

Why own machines:
1. Steal user credentials

Malware injects
Javascript

Bank sends login
page needed to log in

When user submits
information, also
sent to attacker

User requests login page

Similar mechanism used
by Zeus malware

Bank

4

Attacker’s goal: look like a random Internet user

Use the IP address of infected machine or phone for:

• Spam (e.g. the storm botnet)

Spamalytics: 1:12M pharma spams leads to purchase
1:260K greeting card spams leads to infection

• Denial of Service: Services: 1h (20$), 24h (100$)

• Click fraud (e.g. Clickbot.a)

Why own machines:
2. IP address and bandwidth stealing

5

Example: Stuxtnet

Windows infection

Siemens PCS 7 SCADA control software on Windows

Siemens device controller on isolated network

Why own machines:
3. Spread to isolated systems

6

Stuxnet

7

Stuxnet: Anatomy of a Computer Virus (watch at https://vimeo.com/25118844)
Direction and Motion Graphics: Patrick Clair http://patrickclair.com

Written by: Scott Mitchell
Production Company: Zapruder's Other Films.

What do we mean by security?

8

What do we mean by security?

• Information security is larger than
computer security

– Defending information from unauthorized access,
use, disclosure, disruption, modification, perusal,
inspection, recording or destruction

• What does it mean for a computer system to be
secure?

9

What do we mean by security?

• What does it mean for a computer system to be
secure?

– Achieving some goal in the presence of an
adversary

– The system only does what it is expected to

– Should prevent unauthorized use

– What is “unauthorized”?

– What about spam?

10

When is a computer system secure?

• When it does exactly what it should

– Not more
– Not less

• But how to know what a system is supposed to do?
– Somebody tells us?

• But do we trust them?

– We write the specification ourselves?
• How do we verify that the software meets the specification?

– We write the code ourselves?
• But what fraction of the software you use have you written?
• Can you trust the hardware it runs on?

11

When is a computer system secure?

• When it does exactly what it should

– Not more
– Not less

• But how to know what a system is supposed to do?
– Somebody tells us?

• But do we trust them?

– We write the specification ourselves?
• How do we verify that the software meets the specification?

– We write the code ourselves?
• But what fraction of the software you use have you written?
• Can you trust the hardware it runs on?

12

When is a computer system secure?

• When it does exactly what it should

– Not more
– Not less

• But how to know what a system is supposed to do?
– Somebody tells us?

• But do we trust them?

– We write the specification ourselves?
• How do we verify that the software meets the specification?

– We write the code ourselves?
• But what fraction of the software you use have you written?
• Can you trust the hardware it runs on?

13

When is a computer system secure?

• A program is secure when it doesn’t do something it shouldn’t

• Easier to specify a list of “bad” things:

– Delete or corrupt important files

– Crash my system

– Send my password or credit card details over the Internet

• But... what if most of the time the program doesn’t do bad

things, but occasionally it does? Is it secure?

• Difficult to verify that a system does what it is expected to,

impossible to verify that it does not what it is not expected to

14

When is a computer system secure?

15

E.g. SQL injection

• Security is all about trade-offs

– Performance

– Cost

– Usability

– Functionality

• The right question is: how do you know when
something is secure enough?

– Manage security risks vs benefits

– Requires understanding of the trade-offs involved

16

“Security is mostly a superstition” –
Helen Keller (1880-1968), American writer and activist

• What are you trying to protect? How valuable is it?
– Nuclear missile launch station vs. … coffee machine

• In what way is it valuable?
– May be important only to one person (e.g. private e-mail or passwords)

– May be important because accurate and reliable (e.g. bank’s accounting logs)

– May be important because of a service it provides (e.g. Google’s web servers)

17

How to think about trade-offs?

High level plan

• Policy: the goal you want to achieve
– e.g. only Alice should read file F

• Threat model: assumptions about what the attacker
could do
– e.g. can guess passwords, cannot physically grab file server
– Better to err on the side of assuming attacker can do something

• Mechanism: knobs that your system provides to help
uphold policy
– e.g. user accounts, passwords, file permissions, encryption

• Resulting goal: no way for adversary within threat
model to violate policy
– Note that goal has nothing to say about mechanism

18

Security goals

• Prevent common vulnerabilities from occurring (e.g. buffer overflows)

– Recover from attacks

• Traceability, accountability and auditing of security-relevant actions

– Monitoring

• Detect attacks

– Privacy, confidentiality, anonymity

– Protect secrets

• Authenticity

– Needed for access control, authorization, etc.

• Integrity

– Prevent unwanted modification or tampering

• Availability and reliability

– Reduce risk of DoS

19

• Confidentiality

– NO unauthorized disclosure of information
• E.g. a credit card transaction system attempts to enforce confidentiality

by encrypting credit card details over the Internet and in the transaction
processing network

• Integrity
– NO unauthorized information modification

• E.g. traditional Unix file permissions can be an important factor in single
system measures for protecting data integrity

• Availability
– Information or system remains available despite attacks

• High availability systems aim to remain available at all times, preventing
disruptions due to power outages, upgrades, hardware failures, Denial of
Service (DoS) attacks, …

20

Classic CIA triad

Example security mechanisms

• Verifying the identity of a prospective user by demanding a password
– Authentication

• Shielding the computer to prevent interception and subsequent
interpretation of electromagnetic radiation
– Covert channels

• Enciphering information sent communication channels
– Cryptography

• Locking the room containing the computer
– Physical aspects of security

• Controlling who is allowed to make changes to a computer system
– Social aspects of security

21

Introduction to cryptography

22

κρμπτο γραφη (Cryptography)

• Greek for “secret writing”

• Confidentiality
– Obscure a message from eavesdroppers

• Integrity
– Assure recipient that the message was not altered

• Authentication
– Verify the identity of the source of a message

• Non-repudiation
– Convince a 3rd party that what was said is accurate

23

Terminology

• Encryption algorithm

– Transforms a plaintext into a ciphertext that is unintelligible for
non-authorized parties

– Usually parametrized with a cryptographic key

• Asymmetric (Public) key cryptography
– Crypto system: encryption + decryption algorithms + key

generation

• Symmetric (Shared) key cryptography
– Cipher/decipher: symmetric-key encryption/decryption algorithms

Encryption Decryption
ciphertext ciphertext plaintextplaintext

Alice Bob

24

Security through obscurity

Should the encryption algorithm be
kept secret?

25

Kerckhoffs's principle

“A cryptosystem should be secure even if
everything about the system, except the secret
key, is public knowledge.”

26

Auguste Kerckhoffs, 1883

Symmetric cryptography

Assumes parties already share a secret key
Same secret key for both encryption and decryption

27

Building block: sym. encryption

E, D: cipher k: secret key (e.g. 128 bits)

m, c: plaintext, ciphertext n: nonce (aka IV)

Encryption algorithm is publicly known

• Never use a proprietary cipher

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

28

Use Cases

• Single use key: (one time key)

– Key is only used to encrypt one message

• encrypted email: new key generated for every email

– No need for nonce (set to 0)

• Multi use key: (many time key)

– Key used to encrypt multiple messages

• SSL/TLS: same key used to encrypt many packets

– Need either unique nonce or random nonce
29

First example: One Time Pad (single use key)

•Vernam (1917)

•Shannon ‘49:
– OTP is “secure” against ciphertext-only attacks

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:

1 0 0 1 1 0 1 0 01Ciphertext:

30

Stream ciphers (single use key)

Problem: OTP key is as long as the message

Solution: Pseudo random key -- stream ciphers

Stream ciphers: RC4 (126 MB/sec) , Salsa20/12 (643 MB/sec)

key

PRG

message

ciphertext

c PRG(k) m

31

Dangers in using stream ciphers

One time key !! “Two time pad” is insecure:

Eavesdropper does:

Enough redundancy in English encoding that:

32

Block ciphers: crypto work horse

E, D CT Block

n Bits

PT Block

n Bits

Key k Bits

Canonical examples:

1. 3DES: n= 64 bits, k = 168 bits 13 MB/s

2. AES: n=128 bits, k = 128, 192, 256 bits 109 MB/s

IV handled as part of PT block

33

Input: (m, k)

Repeat simple “mixing” operation several times

 DES: Repeat 16 times:

 AES-128: Mixing step repeated 10 times

Difficult to design: must resist subtle attacks

 differential attacks, linear attacks, brute-force, …

Building a block cipher

mL mR

mR mLF(k,mR)

34

F

mRmL

F

PERMUTATION

16 rounds

INVERSE PERMUTATION

KEY

DES BLOCK

Block ciphers built by iteration

R(k,m): round function

for DES (n=16), for AES (n=10)

key k

key expansion

k1 k2 k3 kn

R
(k

1
,

)

R
(k

2
,

)

R
(k

3
,

)

R
(k

n
,

)

m c

35

Incorrect use of block ciphers

Electronic Code Book (ECB):

Problem:
– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

36

In pictures

37

Correct use of block ciphers: CBC mode

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]IV

E(k,)

c[0] c[1] c[2] c[3]IV

ciphertext

Cipher Block Chaining with random IV:

Q: how to do decryption?
38

Single use key: no IV needed (IV=0)

Multi use key:

Best: use a fresh random IV for every message

Can use unique IV (e.g counter)
but then first step in CBC must be IV’ E(k1,IV)

benefit: may save transmitting IV with ciphertext

Use cases: how to choose an IV

39

In pictures

40

Problems with shared key crypto

• Compromised key means interceptors can
decrypt any ciphertext they’ve acquired

– Change keys frequently to limit damage

• Distribution of keys is problematic

– Keys must be transmitted securely

– Use couriers?

– Distribute in pieces over separate channels?

41

Public key cryptography

42

Public Key Encryption

PK: public key , SK: secret key (e.g., 1024 bits)

Example: Bob generates (PKBob, SKBob) and gives PKBob to Alice

E D
E(PKBob,m)=c c D(SKBob,c)=mm

PKBob SKBob

Alice Bob

key pair

43

Gen

Applications

Session setup (only eavesdropping security)

Non-interactive applications: (e.g. Email)

• Bob sends email to Alice encrypted using PKAlice

• Note: Bob needs PKAlice (public key management)

generate (PK, SK)

Alice

choose random x
(e.g. 48 bytes)

BobPKAlice

E(PKAlice, x)
x

44

(Simple) RSA Algorithm

• Generating a key:
– Generate composite n = p * q, where p and q are secret primes

– Pick public exponent e

– Solve for secret exponent d in d e ≡ 1 (mod (p -1) (q – 1))

– Public key = (e, n), private key = d

• Encrypting message m: c = me mod n

• Decrypting ciphertext c: m = cd mod n

• Security due to cost of factoring large numbers
– Finding (p,q) given n takes O(e log n log log n) operations

– n chosen to be 2048 or 4096 bits long
45

Applications

• Public-key encryption

– Alice public key for encryption

– Anyone can send encrypted message

– Only Alice can decrypt messages (with secret key)

• Digital signature scheme

– Alice public key for verifying signatures

– Anyone can check a message signed by Alice

– Only Alice can sign messages (with secret key)
46

Establishing a shared secret

Alice Bob

(pk, sk) G()

“Alice”, pk
choose random

x

“Bob”, c E(pk,x)

D(sk,c) x

x shared secret

47

Insecure against man in the middle

The protocol is insecure against active attacks

48

Alice BobMiTM

(pk, sk) G()

“Alice”, pk

(pk’, sk’) G()

choose random
x

“Bob”, E(pk’, x)
||

x D(sk’, E(pk’, x))

“Alice”, pk’||

“Bob”, E(pk, x)
||

Authenticated channel

• You should always expect a man-in-the-middle

– e.g. on the internet, your messages go through many

intermediaries

• Solution: Use an authenticated channel

– For instance, Alice and Bob have certificates that contain a

public key, and exchange them prior to the msg exchange

– They use them to authenticate the values in the session

setup phase

49

Public-Key authenticity

• How do we know that a public key belongs to Alice?

• Solution 1: Public-Key Infrastructure (PKI) → SSL/TLS
– Trusted root Certificate Authority (e.g. Symantec)

• Everyone must know the verification key of root CA

• Check your browser; there are hundreds!!

– Root authority signs intermediate CA

– Results in a certificate chain

• Solution 2: Web of Trust (WOT)

– Decentralized trust model

– Users endorse the public key

– Key signing parties

50

Trade-offs for Public Key Crypto

• More computationally expensive than symmetric
(shared) key crypto

– Algorithms are harder to implement

– Require more complex machinery

• More formal justification of difficulty

– Hardness based on complexity-theoretic results

• A principal needs 1 private key and 1 public key

– Number of keys is O(n)

51

Cryptographic hash functions

52

Hash Algorithms

• Take a variable length string

• Produce a fixed length digest
– Different strings can have the same hash

• (Non-cryptographic) Examples:
– Parity (or byte-wise XOR)
– CRC

• Realistic Example:
– The NIST Secure Hash Algorithm (SHA) takes a message

of less than 264 bits and produces a digest of 160 bits

hash

53

Cryptographic Hashes

• Create a hard-to-invert summary of input data

• Like a check-sum or error detection code

– Uses a cryptographic algorithm internally

– More expensive to compute

• Sometimes called a Message Digest

• Examples:

– Secure Hash Algorithm (SHA)

– Message Digest (MD4, MD5)

54

Desired Properties

• One way hash function
– Given a hash value , it should be infeasible to find

• Collision resistance
– It should be infeasible to find two different messages 1 and 2

1 2

• Random oracle property
– is indistinguishable from a random n-bit value

– Attacker must spend a lot of effort to be able to modify the
message without altering the hash value

55

Data integrity

Message Authentication Codes

56

Message Integrity: MACs

• Goal: message integrity. No confidentiality.

– ex: Protecting public binaries on disk.

Alice Bob

k kMessage m tag

Generate tag:
tag S(k, m)

Verify tag:
V(k, m, tag) = `yes’

?

note: non-keyed checksum (CRC) is an insecure MAC !!

57

Secure MACs

• Attacker’s power: chosen message attack
– for m1,m2,…,mq attacker is given ti S(k,mi)

• Attacker’s goal: existential forgery
– produce some new valid message/tag pair (m,t)

(m,t) { (m1,t1) , … , (mq,tq) }

• A secure PRF (hash function) gives a secure MAC:

– S(k,m) = F(k,m)

– V(k,m,t): `yes’ if t = F(k,m) and `no’ otherwise.

58

Standardized method: HMAC
(Hash-MAC)

Most widely used MAC on the Internet

H: hash function.

example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

HMAC: S(k, m) = H(kopad || H(kipad || m))

Maintains performance of the original hash function

59

Authenticated Encryption

Encryption + MAC

60

Combining MAC and ENC

Option 1: MAC-then-Encrypt (SSL/TLS)

Option 2: Encrypt-then-MAC (IPsec)

Option 3: Encrypt-and-MAC (SSH)

Msg M Msg M MAC

Enc KE
MAC(M,KI)

Msg M

Enc KE

MAC

MAC(C, KI)

Msg M

Enc KE

MAC

MAC(M, KI)

Encryption key KE MAC key = KI

Secure on
general
grounds

61

To remember

62

Limitations of cryptography

• Most security problems are not crypto problems

– This is good: cryptography works!

– This is bad
• People make other mistakes; crypto doesn’t solve them

• Misuse of cryptography is fatal for security

– WEP – ineffective, highly embarrassing for industry

– Occasional unexpected attacks on systems
subjected to serious review

63

In reality

64

Next topic:
Blockchains

65

