
Performance Evaluation

CS 240: Computing Systems and Concurrency
Lecture 22

Marco Canini



• We cared a lot about:
– Are the results correct?

• But in practice we also need to consider quantitatively:
– Are the results obtained in a reasonable time?
– Is a system faster than another one?

• Today— How to analyze the performance of a system?

2

Context and today’s outline



• The study of an entire system, including all physical 
components and the full software stack

• Include anything that can affect performance
– Anything in the data path, software or hardware
– For distributed systems, this means multiple servers

3

What’s systems performance?

System
Under
Test

Input

(Workload)

Resulting Performance

Perturbations



• Workload
– The input to the system or load applied

• Utilization
– A measure of how busy a resource is
– The capacity consumed (for a capacity-based resource)

• Saturation
– The degree to which a resource has queued work it 

cannot service
• Bottleneck

– A resource that limits the system performance

4

Some terms



• Response time
– The time for an operation to complete
– Includes any time spent waiting (queuing time) and 

time spent being serviced (service time), and time to 
transfer the result

5

More terms

Server

Input

Response
Time

Output

Queue



• Many roles:
– Sys admins / capacity planners
– Support staff
– Application developers
– DB / Web admins
– Researchers
– Performance engineers (primary activity)

6

Who in interested?



• Like a work of art, a successful 
evaluation cannot be produced 
mechanically

• Every evaluation requires an 
intimate knowledge of the system 
and a careful selection of 
methodology, workloads and tools

• Performance is challenging

7

Performance evaluation is an art



• Is there an issue to begin with? If so, when is it considered fixed?

• Consider:
– The average disk I/O response time is 1 ms

• Is this good or bad?

• Response time is one of the best metrics to quantify 
performance; the difficulty is interpreting its information

• Performance objectives and goals need to be clear
– Orient expectations as well as choice of techniques, tools, 

metrics and workloads

8

Performance is subjective



• Many components and sources of root causes
• Issues may arise from complex interactions between

subsystems that operate well in isolation
– Cascading failures: when one failed component causes

performance issues in others
• Bottlenecks may be complex and related in unexpected ways

– Fixing one may simply move the bottleneck elsewhere
• Issue may be caused by characteristics of workload that are

hard to reproduce in isolation

• Solving complex issues often require a holistic approach
– The whole system needs to be investigated

9

Systems are complex



10

Example of cascading failure

Upstream 
service

August 2014 outage
• One request type was accessing a single slow database

and exhausted an upstream service’s thread pool
• This starved other unrelated requests… causing 

application unavailability

Front end 
service
Front end 

service
Front end 

service
Database
service
Database
service
Database
service

App 1

App 2

WorkflowWorkflowApp 3

x10



• You can’t optimize what you don’t know
• Must quantify the magnitude of issues
• Measuring an existing system helps to see its performance 

and perhaps the room for possible improvements

• Need to define metrics

• Know your tools!
• Be systematic!
• Don’t reinvent the wheel!

11

Measurement is crucial



• The time spent waiting
– E.g., setup a network connection

• Or (broadly)
• The time for any operation to complete

– E.g., data transfer over the network,
an RPC, a DB query, a file system write

• Can allow to estimate maximum speedup
– E.g., assume the network had infinite capacity and 

transfer were instantaneous, how fast would the system 
go?

12

Latency



• The rate of work performed

• In communication:
– Data rate: bytes per second, bits per second
– (Goodput useful throughput: rate for the payload only)

• Systems:
– Operation rate: ops per second, txns, per second

• IOPS
– Input/output operations per second
– E.g., reads and writes to disk per second

13

Throughput



14

Scalability

Load

Tput

Linear

Actual

(or a resource utilization as it approaches 100%)



15

Performance degradation

Load

Response
Time

Linear

Actual



• System X has a performance problem

• What would you do to identify a cause?

• Scientific Method
1. Question
2. Hypothesis
3. Prediction
4. Test (Observational / Experimental)
5. Analysis

16

Problem



Five ways not to fool yourself or: designing 
experiments for understanding performance

Tim Harris

https://timharris.uk/misc/five-ways.pdf

17

https://timharris.uk/misc/five-ways.pdf


Measure as you go
• Develop good test harness for running experiments early
• Have scripts for plotting results
• Automate as much as possible

– Ideally it is a single click process!
• Divide experimental data from plot data



Gain confidence (and understanding)
• Plot what you measure
• Be careful about trade-offs
• Beware of averages
• Check experiments are reproducible



Include lightweight sanity checks
• It’s easy for things to go wrong… and without noticing…
• Make sure you catch problems
• Have sufficiently cheap checks to leave on in all runs
• Have sanity checks at the end of a run
• And don’t output results if any problem occurs



Understand simple cases first
• Start with simple settings and check the system behaves 

as expected
• Be in control of sources of uncertainty to the largest extent 

possible
– And use checks to detect if that assumption does not 

hold
• Simplify workloads and make sure experiments are long 

enough
• Use these as a performance regression test for the future



Look beyond timing
• End to end improvements are great but are they happening 

because of your optimization?
• Try to link differences in workloads with performance
• Look further into differences in resource utilization and 

statistics from performance counters



Toward production setting
• Do observations made in simple controller settings hold in 

more complex environments?
• If that is not true, try to decouple a number of aspects of 

this problem
• Change one factor at a time
• Try to understand the differences



Document results
• You will forget!

– What did that experiment produce?
– Where did I see that result?

• Pick a good convention to save data
• Use non destructive approaches
• Write summary of observations and possible explanations

– Recall: our objective is better understanding
• Pick a good tool for experimenting, documenting and 

sharing
– Try Jupyter



Next lecture topic:
Data-intensive computing I: graph 

processing, distributed ML

25


