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• We cared a lot about:
– Are the results correct?

• But in practice we also need to consider quantitatively:
– Are the results obtained in a reasonable time?
– Is a system faster than another one?

• Today— How to analyze the performance of a system?
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Context and today’s outline



• The study of an entire system, including all physical 
components and the full software stack

• Include anything that can affect performance
– Anything in the data path, software or hardware
– For distributed systems, this means multiple servers
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What’s systems performance?
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• Workload
– The input to the system or load applied

• Utilization
– A measure of how busy a resource is
– The capacity consumed (for a capacity-based resource)

• Saturation
– The degree to which a resource has queued work it 

cannot service
• Bottleneck

– A resource that limits the system performance
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Some terms



• Response time
– The time for an operation to complete
– Includes any time spent waiting (queuing time) and 

time spent being serviced (service time), and time to 
transfer the result
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More terms
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• Many roles:
– Sys admins / capacity planners
– Support staff
– Application developers
– DB / Web admins
– Researchers
– Performance engineers (primary activity)
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Who in interested?



• Like a work of art, a successful 
evaluation cannot be produced 
mechanically

• Every evaluation requires an 
intimate knowledge of the system 
and a careful selection of 
methodology, workloads and tools

• Performance is challenging
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Performance evaluation is an art



• Is there an issue to begin with? If so, when is it considered fixed?

• Consider:
– The average disk I/O response time is 1 ms

• Is this good or bad?

• Response time is one of the best metrics to quantify 
performance; the difficulty is interpreting its information

• Performance objectives and goals need to be clear
– Orient expectations as well as choice of techniques, tools, 

metrics and workloads
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Performance is subjective



• Many components and sources of root causes
• Issues may arise from complex interactions between

subsystems that operate well in isolation
– Cascading failures: when one failed component causes

performance issues in others
• Bottlenecks may be complex and related in unexpected ways

– Fixing one may simply move the bottleneck elsewhere
• Issue may be caused by characteristics of workload that are

hard to reproduce in isolation

• Solving complex issues often require a holistic approach
– The whole system needs to be investigated
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Systems are complex
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Example of cascading failure
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• You can’t optimize what you don’t know
• Must quantify the magnitude of issues
• Measuring an existing system helps to see its performance 

and perhaps the room for possible improvements

• Need to define metrics

• Know your tools!
• Be systematic!
• Don’t reinvent the wheel!

11

Measurement is crucial



• The time spent waiting
– E.g., setup a network connection

• Or (broadly)
• The time for any operation to complete

– E.g., data transfer over the network,
an RPC, a DB query, a file system write

• Can allow to estimate maximum speedup
– E.g., assume the network had infinite capacity and 

transfer were instantaneous, how fast would the system 
go?
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Latency



• The rate of work performed

• In communication:
– Data rate: bytes per second, bits per second
– (Goodput useful throughput: rate for the payload only)

• Systems:
– Operation rate: ops per second, txns, per second

• IOPS
– Input/output operations per second
– E.g., reads and writes to disk per second
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Throughput
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Scalability
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Performance degradation
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• System X has a performance problem

• What would you do to identify a cause?

• Scientific Method
1. Question
2. Hypothesis
3. Prediction
4. Test (Observational / Experimental)
5. Analysis
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Problem



Five ways not to fool yourself or: designing 
experiments for understanding performance

Tim Harris

https://timharris.uk/misc/five-ways.pdf
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https://timharris.uk/misc/five-ways.pdf


Measure as you go
• Develop good test harness for running experiments early
• Have scripts for plotting results
• Automate as much as possible

– Ideally it is a single click process!
• Divide experimental data from plot data



Gain confidence (and understanding)
• Plot what you measure
• Be careful about trade-offs
• Beware of averages
• Check experiments are reproducible



Include lightweight sanity checks
• It’s easy for things to go wrong… and without noticing…
• Make sure you catch problems
• Have sufficiently cheap checks to leave on in all runs
• Have sanity checks at the end of a run
• And don’t output results if any problem occurs



Understand simple cases first
• Start with simple settings and check the system behaves 

as expected
• Be in control of sources of uncertainty to the largest extent 

possible
– And use checks to detect if that assumption does not 

hold
• Simplify workloads and make sure experiments are long 

enough
• Use these as a performance regression test for the future



Look beyond timing
• End to end improvements are great but are they happening 

because of your optimization?
• Try to link differences in workloads with performance
• Look further into differences in resource utilization and 

statistics from performance counters



Toward production setting
• Do observations made in simple controller settings hold in 

more complex environments?
• If that is not true, try to decouple a number of aspects of 

this problem
• Change one factor at a time
• Try to understand the differences



Document results
• You will forget!

– What did that experiment produce?
– Where did I see that result?

• Pick a good convention to save data
• Use non destructive approaches
• Write summary of observations and possible explanations

– Recall: our objective is better understanding
• Pick a good tool for experimenting, documenting and 

sharing
– Try Jupyter



Next lecture topic:
Data-intensive computing I: graph 

processing, distributed ML
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