Performance Evaluation

alllauc Ellall deala

'\\‘-_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 22

Marco Canini

Context and today’s outline

We cared a lot about:
— Are the results correct?

But in practice we also need to consider quantitatively:
— Are the results obtained in a reasonable time?
— |s a system faster than another one?

How to analyze the performance of a system?

What’s systems performance?

* The study of an entire system, including all physical
components and the full software stack

* Include anything that can affect performance
— Anything in the data path, software or hardware
— For distributed systems, this means multiple servers

Perturbations

v

Input System Resulting Performance
> Under >
(Workload) Test

Some terms

 Workload

— The input to the system or load applied
» Utilization

— A measure of how busy a resource is

— The capacity consumed (for a capacity-based resource)
« Saturation

— The degree to which a resource has queued work it
cannot service

* Bottleneck
— Aresource that limits the system performance

More terms

Response time
— The time for an operation to complete

— Includes any time spent waiting (queuing time) and
time spent being serviced (service time), and time to
transfer the result

? Input I I I I‘

Response Queue

. Server
Time

Y%

Output

Who in interested?

* Many roles:
— Sys admins / capacity planners
— Support staff
— Application developers
— DB / Web admins
— Researchers
— Performance engineers (primary activity)

Performance evaluation is an art

» Like a work of art, a successful P ——————
evaluation cannot be produced
mechanically

» Every evaluation requires an
intimate knowledge of the system
and a careful selection of
methodology, workloads and tools

Raj Jain

* Performance is challenging

Performance is subjective

Is there an issue to begin with? If so, when is it considered fixed?

Consider:

— The average disk /O response time is 1 ms
Is this good or bad?

Response time is one of the best metrics to quantify
performance; the difficulty is interpreting its information

Performance objectives and goals need to be clear

— Orient expectations as well as choice of techniques, tools,
metrics and workloads

Systems are complex

« Many components and sources of root causes

 Issues may arise from complex interactions between
subsystems that operate well in isolation

— Cascading failures: when one failed component causes
performance issues in others

« Bottlenecks may be complex and related in unexpected ways
— Fixing one may simply move the bottleneck elsewhere

 Issue may be caused by characteristics of workload that are
hard to reproduce in isolation

« Solving complex issues often require a holistic approach
— The whole system needs to be investigated

Example of cascading failure

!App 3
x1
App 1 e S l
’ Front end Upstream
_ || service Datab_ase
App 2 service service
Visual
Dq Studio

Online

August 2014 outage
* One request type was accessing a single slow database
and exhausted an upstream service’s thread pool
« This starved other unrelated requests... causing

application unavailability
10

Measurement is crucial

* You can't optimize what you don’t know
* Must quantify the magnitude of issues

* Measuring an existing system helps to see its performance
and perhaps the room for possible improvements

* Need to define metrics
Know your tools!

Be systematic!
Don’t reinvent the wheel!

Latency

* The time spent waiting
— E.g., setup a network connection
* Or (broadly)
* The time for any operation to complete

— E.g., data transfer over the network,
an RPC, a DB query, a file system write

« Can allow to estimate maximum speedup

— E.g., assume the network had infinite capacity and
transfer were instantaneous, how fast would the system
go?

Throughput

* The rate of work performed

* |In communication:
— Data rate: bytes per second, bits per second
— (Goodput useful throughput: rate for the payload only)

« Systems:
— Operation rate: ops per second, txns, per second

« IOPS
— Input/output operations per second
— E.g., reads and writes to disk per second

Scalability

<" Linear

Tput

Load

(or a resource utilization as it approaches 100%)

Performance degradation

Response

Actual
Time

Linear
>

Load

Problem

« System X has a performance problem
* What would you do to identify a cause?

* Scientific Method

1. Question

2. Hypothesis

3. Prediction

4. Test (Observational / Experimental)
5. Analysis

Five ways not to fool yourself or: designing
experiments for understanding performance

Tim Harris

17

https://timharris.uk/misc/five-ways.pdf

Measure as you go

* Develop good test harness for running experiments early
» Have scripts for plotting results
* Automate as much as possible
— ldeally it is a single click process!
 Divide experimental data from plot data

Gain confidence (and understanding)

* Plot what you measure

» Be careful about trade-offs

« Beware of averages

» Check experiments are reproducible

Include lightweight sanity checks

* It's easy for things to go wrong... and without noticing...
Make sure you catch problems

Have sufficiently cheap checks to leave on in all runs
Have sanity checks at the end of a run

And don’t output results if any problem occurs

Understand simple cases first

Start with simple settings and check the system behaves
as expected

Be in control of sources of uncertainty to the largest extent
possible

— And use checks to detect if that assumption does not
hold

Simplify workloads and make sure experiments are long
enough

Use these as a performance regression test for the future

Look beyond timing

* End to end improvements are great but are they happening
because of your optimization?

* Try to link differences in workloads with performance

* Look further into differences in resource utilization and
statistics from performance counters

Toward production setting

* Do observations made in simple controller settings hold in
more complex environments?

« If that is not true, try to decouple a number of aspects of
this problem

« Change one factor at a time
* Try to understand the differences

Document results

* You will forget!
— What did that experiment produce?
— Where did | see that result?

* Pick a good convention to save data

» Use non destructive approaches

« Write summary of observations and possible explanations
— Recall: our objective is better understanding

* Pick a good tool for experimenting, documenting and
sharing

— Try Jupyter

Next lecture topic:

Data-intensive computing |: graph
processing, distributed ML

25

