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• Single node
– Read data from socket
– Process

– Write output
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Simple stream processing



• Convert Celsius temperature to Fahrenheit
– Stateless operation:   emit (input * 9 / 5) + 32
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Examples:  Stateless conversion

CtoF



• Function can filter inputs
– if (input > threshold)  {  emit input }
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Examples:  Stateless filtering

Filter



• Compute EWMA of Fahrenheit temperature
– new_temp = ⍺ * ( CtoF(input) ) + (1- ⍺) * last_temp
– last_temp = new_temp
– emit new_temp
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Examples:  Stateful conversion

EWMA



• E.g., Average value per window 
– Window can be # elements (10) or time (1s)

– Windows can be fixed (every 5s)

– Windows can be “sliding” (5s window every 1s)
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Examples:  Aggregation (stateful)

Avg



7

Stream processing as chain

AvgCtoF Filter
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Stream processing as directed graph

AvgCtoF Filter

KtoF
sensor
type 2

sensor 
type 1 alerts

storage



Enter “BIG DATA”
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• Large amounts of data to process in real time

• Examples
– Social network trends (#trending)

– Intrusion detection systems (networks, datacenters)

– Sensors:  Detect earthquakes by correlating 
vibrations of millions of smartphones

– Fraud detection 
• Visa:  2000 txn / sec on average, peak ~47,000 / sec
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The challenge of stream processing



Tuple-by-Tuple
input ← read
if (input > threshold)  {  

emit input 
}

Micro-batch
inputs ← read
out = []
for input in inputs {

if (input > threshold) {
out.append(input)

}
}
emit out
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Scale “up”



Tuple-by-Tuple
Lower Latency

Lower Throughput

Micro-batch
Higher Latency

Higher Throughput
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Scale “up”

Why?  Each read/write is an system call into kernel.  
More cycles performing kernel/application transitions 

(context switches), less actually spent processing data.
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Scale “out”
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Stateless operations: trivially parallelized

C F

C F

C F



• Aggregations:
– Need to join results across parallel computations
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State complicates parallelization

AvgCtoF Filter



• Aggregations:
– Need to join results across parallel computations
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State complicates parallelization

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter



• Aggregations:
– Need to join results across parallel computations
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Parallelization complicates fault-tolerance

Avg

CtoF

CtoF

CtoF
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• Compute trending keywords
– E.g., 
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Can parallelize joins

Sum
/ key

Sum
/ key

Sum
/ key

Sum
/ key

Sort top-k

- blocks -

portion tweets

portion tweets

portion tweets
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Can parallelize joins
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Sum
/ key top-k
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Parallelization complicates fault-tolerance
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/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets

1. merge
2. sort
3. top-k



A Tale of Four Frameworks

1. Record acknowledgement (Storm)

2. Micro-batches (Spark Streaming, Storm Trident)

3. Transactional updates (Google Cloud dataflow)

4. Distributed snapshots (Flink)
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• Architectural components
– Data:  streams of tuples, e.g., Tweet = <Author, Msg, Time>
– Sources of data: “spouts”
– Operators to process data: “bolts”
– Topology: Directed graph of spouts & bolts
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Apache Storm



• Multiple processes (tasks) run per bolt

• Incoming streams split among tasks
– Shuffle Grouping:  Round-robin distribute tuples to tasks
– Fields Grouping:  Partitioned by key / field 
– All Grouping:  All tasks receive all tuples (e.g., for joins)
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Apache Storm: Parallelization



• Goal: Ensure each input “fully processed”

• Approach:  DAG / tree edge tracking

– Record edges that get created as tuple is 
processed

– Wait for all edges to be marked done

– Inform source (spout) of data when 
complete;  otherwise, they resend tuple

• Challenge:  “at least once” means:

– Bolts can receive tuple > once

– Replay can be out-of-order

– ... application needs to handle
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Fault tolerance via record acknowledgement
(Apache Storm – at least once semantics)



• Split stream into series of small, atomic 
batch jobs (each of X seconds)

• Process each individual batch using 
Spark “batch” framework 

• Emit each micro-batch result

– RDD = “Resilient Distributed Data”
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Apache Spark Streaming:
Discretized Stream Processing

Spark

Spark
Streaming

batches of X 
seconds

live data 
stream

processed 
results



• Can build on batch frameworks (Spark) and tuple-by-tuple (Storm)

– Tradeoff between throughput (higher) and latency (higher)

• Each micro-batch may succeed or fail 
– Original inputs are replicated (memory, disk)

– At failure, latest micro-batch can be simply recomputed (trickier if stateful)

• DAG is a pipeline of transformations from micro-batch to micro-batch

– Lineage info in each RDD specifies how generated from other RDDs

• To support failure recovery:
– Occasionally checkpoints RDDs (state) by replicating to other nodes

– To recover: another worker (1) gets last checkpoint, (2) determines 
upstream dependencies, then (3) starts recomputing using those 
usptream dependencies starting at checkpoint (downstream might filter)
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Fault tolerance via micro batches
(Apache Spark Streaming, Storm Trident)



• Computation is long-running DAG of continuous operators

• For each intermediate record at operator
– Create commit record including input record, state update, and 

derived downstream records generated
– Write commit record to transactional log / DB

• On failure, replay log to 
– Restore a consistent state of the computation
– Replay lost records (further downstream might filter)

• Requires:  High-throughput writes to distributed store
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Fault Tolerance via transactional updates 
(Google Cloud Dataflow)



• Rather than log each record for each operator,                          
take system-wide snapshots

• Snapshotting:
– Determine consistent snapshot of system-wide state              

(includes in-flight records and operator state)
– Store state in durable storage

• Recover:
– Restoring latest snapshot from durable storage
– Rewinding the stream source to snapshot point, and replay inputs

• Algorithm is based on Chandy-Lamport distributed snapshots, 
but also captures stream topology
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Fault Tolerance via distributed snapshots
(Apache Flink)



• Use markers (barriers) in the input data stream to tell 
downstream operators when to consistently snapshot

Fault Tolerance via distributed snapshots
(Apache Flink)

30



• Keeping system performant:
– Careful optimizations of DAG

– Scheduling:  Choice of parallelization, use of resources

– Where to place computation

– …

• Often, many queries and systems using same 
cluster concurrently:  “Multi-tenancy”
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Optimizing stream processing



Coordination

Practical consensus
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• Lots of apps need various coordination primitives
– Leader election
– Group membership
– Locks
– Leases

• Common requirement is consensus but we’d like to 
avoid duplication
– Duplicating is bad and duplicating poorly even worse
– Maintenance?
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Needs of distributed apps



• One approach
– For each coordination primitive build a specific service

• Some recent examples
– Chubby, Google [Burrows et al, USENIX OSDI, 2006]

• Lock service
– Centrifuge, Microsoft [Adya et al, USENIX NSDI, 2010]

• Lease service
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How do we go about coordination?



• Alternative approach
– A coordination service
– Develop a set of lower level primitives (i.e., an API) 

that can be used to implement higher-level 
coordination services

– Use the coordination service API across many 
applications

• Example: Apache Zookeeper
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How do we go about coordination?



• A “Coordination Kernel”
– Provides a file system abstraction and API that 

enables realizing several coordination primitives
• Group membership
• Leader election
• Locks
• Queueing
• Barriers
• Status monitoring
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ZooKeeper



• In brief, it’s a file system with a simplified API
• Only whole file reads and writes

– No appends, inserts, partial reads
• Files are znodes; organized in hierarchical 

namespace
• Payload not designed for application data storage 

but for application metadata storage
• Znodes also have associated version counters 

and some metadata (e.g., flags)
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Data model



• CAP perspective: Zookeeper is CP
– It guarantees consistency
– May sacrifice availability under system partitions

• strict quorum based replication for writes
• Consistency (safety)

– FIFO client order: all client requests are executed in 
order sent by client

• Matters for asynchronous calls
– Linearizable writes: all writes are linearizable
– Serializable reads: reads can be served locally by any 

server, which may have a stale value
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Semantics



• Regular znodes
– May have children
– Explicitly deleted by clients

• Ephemeral znodes
– May not have children
– Disappear when deleted or when creator terminates

• Session termination can be deliberate or due to failure
• Sequential flag

– Property of regular znodes
– Children have strictly increasing integer appended to their 

names
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Types of znodes



• create(znode, data, flags)
– Flags denote the type of the znode:

• REGULAR, EPHEMERAL, SEQUENTIAL

– znode must be addressed by giving a full path in all 

operations (e.g., ‘/app1/foo/bar’)

– returns znode path

• delete(znode, version)
– Deletes the znode if the version is equal to the actual 

version of the znode

– set version = -1 to omit the conditional check (applies 

to other operations as well) 
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Client API



• exists(znode, watch)
– Returns true if the znode exists, false otherwise
– watch flag enables a client to set a watch on the znode
– watch is a subscription to receive an information from 

the Zookeeper when this znode is changed
– NB: a watch may be set even if a znode does not exist

• The client will be then informed when a znode is created
• getData(znode, watch) 
– Returns data stored at this znode
– watch is not set unless znode exists
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Client API (cont’d)



• setData(znode, data, version)
– Rewrites znode with data, if version is the current 

version number of the znode
– version = -1 applies here as well to omit the condition 

check and to force setData
• getChildren(znode, watch)
– Returns the set of children znodes of the znode

• sync()
– Waits for all updates pending at the start of the 

operation to be propagated to the Zookeeper server 
that the client is connected to
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Client API (cont’d)



Some examples
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• Propose(v)

create(“/c/proposal-”, “v”, SEQUENTIAL)

• Decide()

C = getChildren(“/c”)

Select znode z in C with smallest sequence 
number

v’ = getData(z)
Decide v’
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Implementing consensus



• Clients initialized with the name of znode
– E.g., “/config”

config = getData(“/config”, TRUE)

while (true)

wait for watch notification on “/config”

config = getData(“/config”, TRUE)

Note: A client may miss some configuration, but it will always “refresh” when it 
realizes the configuration is stale
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Simple configuration management



• Idea: leverage ephemeral znodes
• Fix a znode “/group”
• Assume every process (client) is initialized with its 

own unique name and ID
– What to do if there are no unique names?

joinGroup()
create(“/group/” + name, [address,port], EPHEMERAL)

getMembers()
getChildren(“/group”, false)
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Group membership

Set to true to get notified 
about membership changes



Lock(filename)
1: create(filename, “”, EPHEMERAL)

2: if create is successful

3: return //have lock

4: else 

5: getData(filename,TRUE)

6: wait for filename watch

7: goto 1:

Release(filename) 
delete(filename)
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A simple lock



• Herd effect
– If many clients wait for the lock they will all try to 

get it as soon as it is released

• Only implements exclusive locking
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Problems?



Lock(filename)

1: myLock = create(filename + “/lock-”, “”, EPHEMERAL & SEQUENTIAL)

2: C = getChildren(filename, false)

3: if myLock is the lowest znode in C then return

4: else 

5: precLock = znode in C ordered just before myLock

6: if exists(precLock, true)

7: wait for precLock watch

8: goto 2:

Release(filename)

delete(myLock)
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Simple Lock without Herd Effect 



• The previous lock solves herd effect but makes 
reads block other reads

• How to do it such that reads always get the lock 
unless there is a concurrent write?
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Read/Write Locks



Write Lock(filename)
1: myLock = create(filename + “/write-”, “”, EPHEMERAL & SEQUENTIAL)
[...] // same as simple lock w/o herd effect

Read Lock(filename)
1: myLock = create(filename + “/read-”, “”, EPHEMERAL & SEQUENTIAL)
2: C = getChildren(filename, false)
3: if no write znodes lower than myLock in C then return
4: else 

5: precLock = write znode in C ordered just before myLock
6: if exists(precLock, true)
7: wait for precLock watch
8: goto 3:

Release(filename)

delete(myLock)
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Read/Write Locks



A brief look inside
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Zookeeper components

Write
requests

Request
processor

In-memory
Replicated

DB

DB
Commit 

log

Read
requests

ZAB
Atomic 

broadcast

Tx

Tx
Tx



• Fully replicated
– To be contrasted with partitioning/placement in 

storage systems

• Each server has a copy of in-memory DB
– Store the entire znode tree

– Default max 1 MB per znode (configurable)

• Crash-recovery model
– Commit log

– + periodic snapshots of the database
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Zookeeper DB



• Used to totally order write requests
– Relies on a quorum of servers (f+1 out of 2f+1)

• ZAB internally elects leader replica

• Zookeeper adopts this notion of a leader
– Other servers are followers

• All writes are sent by followers to the leader
– Leader sequences the requests and invokes ZAB 

atomic broadcast
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ZAB: a very brief overview



• Upon receiving a write request 
– Leader calculates in what state system will be after the 

write is applied
– Transforms the operation in a transactional update

• Transactional updates are then processed by ZAB, 
DB
– Guarantees idempotency of updates to the DB 

originating from the same operation

• Idempotency important as ZAB may redeliver a 
message
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Request processor



That’s all
Hope you enjoyed CS 240

Final lab (w/ bonus): Dec 4, 1PM

Review session: Dec 5, in class

Final exam: Dec 9, 9AM-12PM, Bldg 9: 
Lecture Hall 2 (room 2325)
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