
Big Data II: Stream Processing
and Coordination

CS 240: Computing Systems and Concurrency
Lecture 24

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Selected content adapted from A. Haeberlen.

• Single node
– Read data from socket
– Process

– Write output

2

Simple stream processing

• Convert Celsius temperature to Fahrenheit
– Stateless operation: emit (input * 9 / 5) + 32

3

Examples: Stateless conversion

CtoF

• Function can filter inputs
– if (input > threshold) { emit input }

4

Examples: Stateless filtering

Filter

• Compute EWMA of Fahrenheit temperature
– new_temp = ⍺ * (CtoF(input)) + (1- ⍺) * last_temp
– last_temp = new_temp
– emit new_temp

5

Examples: Stateful conversion

EWMA

• E.g., Average value per window
– Window can be # elements (10) or time (1s)

– Windows can be fixed (every 5s)

– Windows can be “sliding” (5s window every 1s)

6

Examples: Aggregation (stateful)

Avg

7

Stream processing as chain

AvgCtoF Filter

8

Stream processing as directed graph

AvgCtoF Filter

KtoF
sensor
type 2

sensor
type 1 alerts

storage

Enter “BIG DATA”

9

• Large amounts of data to process in real time

• Examples
– Social network trends (#trending)

– Intrusion detection systems (networks, datacenters)

– Sensors: Detect earthquakes by correlating
vibrations of millions of smartphones

– Fraud detection
• Visa: 2000 txn / sec on average, peak ~47,000 / sec

10

The challenge of stream processing

Tuple-by-Tuple
input ← read
if (input > threshold) {

emit input
}

Micro-batch
inputs ← read
out = []
for input in inputs {

if (input > threshold) {
out.append(input)

}
}
emit out

11

Scale “up”

Tuple-by-Tuple
Lower Latency

Lower Throughput

Micro-batch
Higher Latency

Higher Throughput

12

Scale “up”

Why? Each read/write is an system call into kernel.
More cycles performing kernel/application transitions

(context switches), less actually spent processing data.

13

Scale “out”

14

Stateless operations: trivially parallelized

C F

C F

C F

• Aggregations:
– Need to join results across parallel computations

15

State complicates parallelization

AvgCtoF Filter

• Aggregations:
– Need to join results across parallel computations

16

State complicates parallelization

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter

• Aggregations:
– Need to join results across parallel computations

17

Parallelization complicates fault-tolerance

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter

- blocks -

• Compute trending keywords
– E.g.,

18

Can parallelize joins

Sum
/ key

Sum
/ key

Sum
/ key

Sum
/ key

Sort top-k

- blocks -

portion tweets

portion tweets

portion tweets

19

Can parallelize joins

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets

1. merge
2. sort
3. top-k

20

Parallelization complicates fault-tolerance

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets

1. merge
2. sort
3. top-k

A Tale of Four Frameworks

1. Record acknowledgement (Storm)

2. Micro-batches (Spark Streaming, Storm Trident)

3. Transactional updates (Google Cloud dataflow)

4. Distributed snapshots (Flink)

21

• Architectural components
– Data: streams of tuples, e.g., Tweet = <Author, Msg, Time>
– Sources of data: “spouts”
– Operators to process data: “bolts”
– Topology: Directed graph of spouts & bolts

22

Apache Storm

• Multiple processes (tasks) run per bolt

• Incoming streams split among tasks
– Shuffle Grouping: Round-robin distribute tuples to tasks
– Fields Grouping: Partitioned by key / field
– All Grouping: All tasks receive all tuples (e.g., for joins)

23

Apache Storm: Parallelization

• Goal: Ensure each input “fully processed”

• Approach: DAG / tree edge tracking

– Record edges that get created as tuple is
processed

– Wait for all edges to be marked done

– Inform source (spout) of data when
complete; otherwise, they resend tuple

• Challenge: “at least once” means:

– Bolts can receive tuple > once

– Replay can be out-of-order

– ... application needs to handle

24

Fault tolerance via record acknowledgement
(Apache Storm – at least once semantics)

• Split stream into series of small, atomic
batch jobs (each of X seconds)

• Process each individual batch using
Spark “batch” framework

• Emit each micro-batch result

– RDD = “Resilient Distributed Data”

26

Apache Spark Streaming:
Discretized Stream Processing

Spark

Spark
Streaming

batches of X
seconds

live data
stream

processed
results

• Can build on batch frameworks (Spark) and tuple-by-tuple (Storm)

– Tradeoff between throughput (higher) and latency (higher)

• Each micro-batch may succeed or fail
– Original inputs are replicated (memory, disk)

– At failure, latest micro-batch can be simply recomputed (trickier if stateful)

• DAG is a pipeline of transformations from micro-batch to micro-batch

– Lineage info in each RDD specifies how generated from other RDDs

• To support failure recovery:
– Occasionally checkpoints RDDs (state) by replicating to other nodes

– To recover: another worker (1) gets last checkpoint, (2) determines
upstream dependencies, then (3) starts recomputing using those
usptream dependencies starting at checkpoint (downstream might filter)

27

Fault tolerance via micro batches
(Apache Spark Streaming, Storm Trident)

• Computation is long-running DAG of continuous operators

• For each intermediate record at operator
– Create commit record including input record, state update, and

derived downstream records generated
– Write commit record to transactional log / DB

• On failure, replay log to
– Restore a consistent state of the computation
– Replay lost records (further downstream might filter)

• Requires: High-throughput writes to distributed store

28

Fault Tolerance via transactional updates
(Google Cloud Dataflow)

• Rather than log each record for each operator,
take system-wide snapshots

• Snapshotting:
– Determine consistent snapshot of system-wide state

(includes in-flight records and operator state)
– Store state in durable storage

• Recover:
– Restoring latest snapshot from durable storage
– Rewinding the stream source to snapshot point, and replay inputs

• Algorithm is based on Chandy-Lamport distributed snapshots,
but also captures stream topology

29

Fault Tolerance via distributed snapshots
(Apache Flink)

• Use markers (barriers) in the input data stream to tell
downstream operators when to consistently snapshot

Fault Tolerance via distributed snapshots
(Apache Flink)

30

• Keeping system performant:
– Careful optimizations of DAG

– Scheduling: Choice of parallelization, use of resources

– Where to place computation

– …

• Often, many queries and systems using same
cluster concurrently: “Multi-tenancy”

31

Optimizing stream processing

Coordination

Practical consensus

32

• Lots of apps need various coordination primitives
– Leader election
– Group membership
– Locks
– Leases

• Common requirement is consensus but we’d like to
avoid duplication
– Duplicating is bad and duplicating poorly even worse
– Maintenance?

33

Needs of distributed apps

• One approach
– For each coordination primitive build a specific service

• Some recent examples
– Chubby, Google [Burrows et al, USENIX OSDI, 2006]

• Lock service
– Centrifuge, Microsoft [Adya et al, USENIX NSDI, 2010]

• Lease service

34

How do we go about coordination?

• Alternative approach
– A coordination service
– Develop a set of lower level primitives (i.e., an API)

that can be used to implement higher-level
coordination services

– Use the coordination service API across many
applications

• Example: Apache Zookeeper
35

How do we go about coordination?

• A “Coordination Kernel”
– Provides a file system abstraction and API that

enables realizing several coordination primitives
• Group membership
• Leader election
• Locks
• Queueing
• Barriers
• Status monitoring

36

ZooKeeper

• In brief, it’s a file system with a simplified API
• Only whole file reads and writes

– No appends, inserts, partial reads
• Files are znodes; organized in hierarchical

namespace
• Payload not designed for application data storage

but for application metadata storage
• Znodes also have associated version counters

and some metadata (e.g., flags)

37

Data model

• CAP perspective: Zookeeper is CP
– It guarantees consistency
– May sacrifice availability under system partitions

• strict quorum based replication for writes
• Consistency (safety)

– FIFO client order: all client requests are executed in
order sent by client

• Matters for asynchronous calls
– Linearizable writes: all writes are linearizable
– Serializable reads: reads can be served locally by any

server, which may have a stale value

38

Semantics

• Regular znodes
– May have children
– Explicitly deleted by clients

• Ephemeral znodes
– May not have children
– Disappear when deleted or when creator terminates

• Session termination can be deliberate or due to failure
• Sequential flag

– Property of regular znodes
– Children have strictly increasing integer appended to their

names
39

Types of znodes

• create(znode, data, flags)
– Flags denote the type of the znode:

• REGULAR, EPHEMERAL, SEQUENTIAL

– znode must be addressed by giving a full path in all

operations (e.g., ‘/app1/foo/bar’)

– returns znode path

• delete(znode, version)
– Deletes the znode if the version is equal to the actual

version of the znode

– set version = -1 to omit the conditional check (applies

to other operations as well)

40

Client API

• exists(znode, watch)
– Returns true if the znode exists, false otherwise
– watch flag enables a client to set a watch on the znode
– watch is a subscription to receive an information from

the Zookeeper when this znode is changed
– NB: a watch may be set even if a znode does not exist

• The client will be then informed when a znode is created
• getData(znode, watch)
– Returns data stored at this znode
– watch is not set unless znode exists

41

Client API (cont’d)

• setData(znode, data, version)
– Rewrites znode with data, if version is the current

version number of the znode
– version = -1 applies here as well to omit the condition

check and to force setData
• getChildren(znode, watch)
– Returns the set of children znodes of the znode

• sync()
– Waits for all updates pending at the start of the

operation to be propagated to the Zookeeper server
that the client is connected to

42

Client API (cont’d)

Some examples

43

• Propose(v)

create(“/c/proposal-”, “v”, SEQUENTIAL)

• Decide()

C = getChildren(“/c”)

Select znode z in C with smallest sequence
number

v’ = getData(z)
Decide v’

44

Implementing consensus

• Clients initialized with the name of znode
– E.g., “/config”

config = getData(“/config”, TRUE)

while (true)

wait for watch notification on “/config”

config = getData(“/config”, TRUE)

Note: A client may miss some configuration, but it will always “refresh” when it
realizes the configuration is stale

45

Simple configuration management

• Idea: leverage ephemeral znodes
• Fix a znode “/group”
• Assume every process (client) is initialized with its

own unique name and ID
– What to do if there are no unique names?

joinGroup()
create(“/group/” + name, [address,port], EPHEMERAL)

getMembers()
getChildren(“/group”, false)

46

Group membership

Set to true to get notified
about membership changes

Lock(filename)
1: create(filename, “”, EPHEMERAL)

2: if create is successful

3: return //have lock

4: else

5: getData(filename,TRUE)

6: wait for filename watch

7: goto 1:

Release(filename)
delete(filename)

47

A simple lock

• Herd effect
– If many clients wait for the lock they will all try to

get it as soon as it is released

• Only implements exclusive locking

48

Problems?

Lock(filename)

1: myLock = create(filename + “/lock-”, “”, EPHEMERAL & SEQUENTIAL)

2: C = getChildren(filename, false)

3: if myLock is the lowest znode in C then return

4: else

5: precLock = znode in C ordered just before myLock

6: if exists(precLock, true)

7: wait for precLock watch

8: goto 2:

Release(filename)

delete(myLock)

49

Simple Lock without Herd Effect

• The previous lock solves herd effect but makes
reads block other reads

• How to do it such that reads always get the lock
unless there is a concurrent write?

50

Read/Write Locks

Write Lock(filename)
1: myLock = create(filename + “/write-”, “”, EPHEMERAL & SEQUENTIAL)
[...] // same as simple lock w/o herd effect

Read Lock(filename)
1: myLock = create(filename + “/read-”, “”, EPHEMERAL & SEQUENTIAL)
2: C = getChildren(filename, false)
3: if no write znodes lower than myLock in C then return
4: else

5: precLock = write znode in C ordered just before myLock
6: if exists(precLock, true)
7: wait for precLock watch
8: goto 3:

Release(filename)

delete(myLock)

51

Read/Write Locks

A brief look inside

52

53

Zookeeper components

Write
requests

Request
processor

In-memory
Replicated

DB

DB
Commit

log

Read
requests

ZAB
Atomic

broadcast

Tx

Tx
Tx

• Fully replicated
– To be contrasted with partitioning/placement in

storage systems

• Each server has a copy of in-memory DB
– Store the entire znode tree

– Default max 1 MB per znode (configurable)

• Crash-recovery model
– Commit log

– + periodic snapshots of the database
54

Zookeeper DB

• Used to totally order write requests
– Relies on a quorum of servers (f+1 out of 2f+1)

• ZAB internally elects leader replica

• Zookeeper adopts this notion of a leader
– Other servers are followers

• All writes are sent by followers to the leader
– Leader sequences the requests and invokes ZAB

atomic broadcast

55

ZAB: a very brief overview

• Upon receiving a write request
– Leader calculates in what state system will be after the

write is applied
– Transforms the operation in a transactional update

• Transactional updates are then processed by ZAB,
DB
– Guarantees idempotency of updates to the DB

originating from the same operation

• Idempotency important as ZAB may redeliver a
message

56

Request processor

That’s all
Hope you enjoyed CS 240

Final lab (w/ bonus): Dec 4, 1PM

Review session: Dec 5, in class

Final exam: Dec 9, 9AM-12PM, Bldg 9:
Lecture Hall 2 (room 2325)

57

