Network File Systems

alllauc Ellall deala

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 4

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Abstraction, abstraction, abstraction!

* Local file systems
— Disks are terrible abstractions: low-level blocks, etc.
— Directories, files, links much better

 Distributed file systems

— Make a remote file system look local

— Today: NFS (Network File System)
» Developed by Sun in 1980s, still used today!

3 Goals: Make operations appear:

Local
Consistent

Fast

NFS Architecture

Server 1 Client Server 2
 (root) (root) [(root)

NN AN
Ao)

people students = x - staff users
// \\ mount mount // \\
big jon bob ... jim ann jane joe

“Mount” remote FS (host:path) as local directories

Virtual File System enables transparency

Client kernel Server kernel
System call layer
Y
Virtual file system layer @00 V- nede Virtual file system layer BB 0
; : i A
Y Y Y
Local Local NFS NFS | ... | Local Local
FS 1 FS 2 client server FS 1 FS 2
i ; A :
Y Y i 7 i
Buffer cache Buffer cache
Y Y Y Y
Driver Driver Driver Driver
Message
Message from client
to server
Local disks T Local disks

N P,

Interfaces matter

VFS /Local FS

fd = open (“path”, flags)
read (fd, buf, n)
write (fd, buf, n)

close (£d)

Server maintains state that maps £d to inode, offset

Stateless NFS: Strawman 1

— \\ 44
4

read (“path”, buf, n)

write (“path”, buf, n)

—etoceled

Stateless NFS: Strawman 2

— \\ 44
4

read (“path”, offset, buf, n)

write (“path”, offset, buf, n)

—etoceled

Embed pathnames in syscalls?

AN WN ~

Program 1 on client 1 Program 2 on client 2

cHDIR ("dirl")

fd < opPeN ("f", READONLY) Time

RENAME ("dirl", "dir2")
RENAME ("dir3", "dirl") vy
READ (fd, buf, n)

 Should read refer to current diri/f ordir2/f ?

* In UNIX, it's dir2/f. How do we preserve in NFS?

10

Stateless NFS (for real)

th = lookup (“path”, flags)
read (fh, offset, buf, n)
write (fh, offset, buf, n)

getattr (fth)

Implemented as Remote Procedure Calls (RPCs)

NFS File Handles (£h)

« Opaque identifier provider to client from server

* Includes all info needed to identify file/object on server
volume ID | inode # | generation #

e |t's a trick: “store” server state at the client!

NFS File Handles (and versioning)

Program 1 on client 1 Program 2 on client 2 Time

fd < oPeN ("f", READONLY)

UNLINK ("f")
fd <« oPeN ("f", CREATE)

A WN ~

READ (fd, buf, n) Y
« With generation #'s, client 2 continues to interact with
“correct” file, even while client 1 has changed “f”

« This versioning appears in many contexts,
e.g., MVCC (multiversion concurrency control) in DBs

13

NFS example

fd = open(”/foo”, ...);
Send LOOKUP (rootdir FH, ”"foo”)

Receive LOOKUP request
look for ”"foo” in root dir
return foo’s FH + attributes

Receive LOOKUP reply
allocate file desc 1n open file table
store foo’s FH in table
store current file position (0)
return file descriptor to application

14

NFS example

read (fd, buffer, MAX);
Index into open file table with fd
get NFS file handle (FH)
use current file position as offset
Send READ (FH, offset=0, count=MAX)

Receive READ request

use FH to get volume/inode num

read 1node from disk (or cache)
compute block location (using offset)
read data from disk (or cache)

return data to client

Receive READ reply
update file position (t+tbytes read)
set current file position = MAX
return data/error code to app

15

NFS example

read (fd, buffer, MAX);
Same except offset=MAX and
set current file position = 2*MAX

read (fd, buffer, MAX);
Same except offset=2*MAX and
set current file position = 3*MAX

close (£d) ;
Just need to clean up local structures
Free descriptor “fd” in open file table
(No need to talk to server)

16

Handling server failures

What to do when server is not responding?
— Retry again!

« set a timer; a reply before cancels the retry; else retry

s it safe to retry operations?
— NFS operations are idempotent

« the effect of multiple invocations is same as single one

— LOOKUP, READ, WRITE: message contains all that is
necessary to re-execute

— What is not idempotent?

* E.g., if we had INCREMENT
* Real example: MKDIR is not

Are remote == |ocal?

Client kernel
System call layer
Y
Virtual file system layer @00
i i !
Local Local NFS
FS 1 FS 2 client
¥ ¥ |
Buffer cache
Y Y
Driver Driver
Message
to server
Local disks

_

V- node

Server kernel

Virtual file system layer BB 0

T

Y

NFS
server

A

Local Local
FS 1 FS 2
Y Y

Buffer cache

Message
from client

!

Y

Y

Driver Driver

7 6

Local disks

J

TANSTANFL

(There ain’t no such thing as a free lunch)

With local FS, read sees data from “most recent’

write, even if performed by different process

— “Read/write coherence”, linearizability

nieve the same All operations appear to have)

e Ac

Perform all reads

-Huge cost: high [§

executed atomically in an order
that is consistent with the global
real-time ordering of operations.

_ (Herliny & Wing, 1991))

 And what if the server doesn’t return?
— Options: hang indefinitely, return ERROR

Caching

Lower latency, better scalability

Consistency

No longer one single copy of data,

to which all operations are serialized

Caching options

* Centralized control: Record status of clients
(which files open for reading/writing, what cached, ...)

« Read-ahead: Pre-fetch blocks before needed
* Write-through: All writes sent to server

» Write-behind: Writes locally buffered, send as batch

Cache consistency problem

Consistency challenges:

— When client writes, how do others caching data get

updated? (Callbacks, ...)
— Two clients concurrently write? (Locking, overwrite, ...)

C1
cache: F[v1]

C2
cache: F[v2]

C3
cache: empty

22

Should server maintain per-client state?

Stateful Stateless
* Pros * Pros
— Smaller requests — Easy server crash recovery
— Simpler req processing — No open/close needed
— Better cache coherence, — Better scalability
file locking, etc.
« Cons * Cons
— Per-client state limits — Each request must be
scalability fully self-describing
— Fault-tolerance on state — Consistency is harder,

required for correctness e.g., no simple file locking

It’s all about the state, 'bout the state, ...

 Hard state: Don’t lose data
— Durability: State not lost

 Write to disk, or cold remote backup
 Exact replica or recoverable (DB: checkpoint + op log)

— Avalilability (liveness): Maintain online replicas

» Soft state: Performance optimization

— Then: Lose at will

— Now: Yes for correctness (safety), but how does recovery
impact availability (liveness)?

NFS

Stateless protocol
— Recovery easy: crashed == slow server
— Messages over UDP (unencrypted)

Read from server, caching in NFS client
NFSv2 was write-through (i.e., synchronous)

NFSv3 added write-behind
— Delay writes until c1lose or £sync from application

Exploring the consistency tradeoffs

* Write-to-read semantics too expensive
— Give up caching, require server-side state, or ...

» Close-to-open “session” semantics

— Ensure an ordering, but only between application
close and open, notall writes and reads.

— |If B opens after A closes, will see A's writes

— But if two clients open at same time? No guarantees

* And what gets written? “Last writer wins”

NFS Cache Consistency

* Recall challenge: Potential concurrent writers

« Cache validation:
— Get file's last modification time from server: getattr (fh)

— Both when first open file, then poll every 3-60 seconds

* If server’s last modification time has changed, flush dirty blocks
and invalidate cache

* When reading a block

— Validate: (current time — last validation time < threshold)

— |If valid, serve from cache. Otherwise, refresh from server -

Some problems...

e “Mixed reads” across version

— Areads block 1-10 from file, B replaces blocks 1-20,
A then keeps reading blocks 11-20.

* Assumes synchronized clocks. Not really correct.

— WEe'll learn about the notion of logical clocks later

» Writes specified by offset

— Concurrent writes can change offset

Server-side write buffering

AKX XXX XXX XXX XXX XXX XXX XXX XX XX XXX XXX XXX XXX XXX XXX XXX XX XXX XX XXXXX

YY
222272222222 22Z222Z222ZZZ7Z

write (fd, a buffer, size); // £ill first block with a’s
write (fd, b buffer, size); // fill second block with b’s
write (fd, c¢ buffer, size); // £ill third block with c’s

Expected:
dddaddad
bb
CCCCCCCCcCcCcCccrececeeeeeeceeeceeeceeeeeeceececeeeceeecececececeeccecececcecececcecececcececcece

But assume server buffers 2" write, reports OK but then crashes:
dddaddad

YY
CCccccccceccecceccecceccececcecceccececcecceccececcecceccecceccecceccecececceccececceccecece

Server must commit each write to stable (persistent) storage
before informing the client of success

When statefulness helps

Callbacks
Locks + Leases

NFS Cache Consistency

* Recall challenge: Potential concurrent writers
« Timestamp invalidation: NFS

« Callback invalidation: AFS, Sprite, Spritely NFS

« Server tracks all clients that have opened file

« On write, sends notification to clients if file changes;
client invalidates cache

* Leases: Gray & Cheriton ‘89, NFSv4

Locks

* Aclient can request a lock over a file / byte range
— Advisory: Well-behaved clients comply

— Mandatory: Server-enforced
 Client performs writes, then unlocks

* Problem: What if the client crashes?

— Solution: Keep-alive timer: Recover lock on timeout

* Problem: what if client alive but network route failed?

— Client thinks it has lock, server gives lock to other: “Split brain”

Leases

* Client obtains lease on file for read or write

— “"Alease is a ticket permitting an activity; the lease is
valid until some expiration time.”

« Read lease allows client to cache clean data

— Guarantee: no other client is modifying file

* Write lease allows safe delayed writes
— Client can locally modify then batch writes to server

— Guarantee: no other client has file cached

Using leases

* Client requests a lease
— May be implicit, distinct from file locking
— Issued lease has file version number for cache coherence

« Server determines if lease can be granted
— Read leases may be granted concurrently
— Write leases are granted exclusively

* |f conflict exists, server may send eviction notices
— Evicted write lease must write back
— Evicted read leases must flush/disable caching
— Client acknowledges when completed

Bounded lease term simplifies recovery
» Before lease expires, client must renew lease

* Client fails while holding a lease”

— Server waits until the lease expires, then unilaterally reclaims
— If client fails during eviction, server waits then reclaims

« Server fails while leases outstanding”? On recovery,

— Wait lease period + clock skew before issuing new leases
— Absorb renewal requests and/or writes for evicted leases

Requirements dictate design

Case Study: AFS

Andrew File System (CMU 1980s-)

« Scalability was key design goal
— Many servers, 10,000s of users

« QObservations about workload
— Reads much more common than writes
— Concurrent writes are rare / writes between users disjoint

« Interfaces in terms of files, not blocks
— Whole-file serving: entire file and directories
— Whole-file caching: clients cache files to local disk

« Large cache and permanent, so persists across reboots

AFS: Consistency

» Consistency: Close-to-open consistency
— No mixed writes, as whole-file caching / whole-file overwrites

— Update visibility: Callbacks to invalidate caches

* What about crashes or partitions?
— Client invalidates cache iff
» Recovering from failure
« Regular liveness check to server (heartbeat) fails.

— Server assumes cache invalidated if callbacks fail +
heartbeat period exceeded

Next lecture topic:
Time Synchronization and Logical Clocks

39

