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Abstraction, abstraction, abstraction!

* Local file systems
— Disks are terrible abstractions: low-level blocks, etc.
— Directories, files, links much better

 Distributed file systems

— Make a remote file system look local

— Today: NFS (Network File System)
» Developed by Sun in 1980s, still used today!



3 Goals: Make operations appear:

Local
Consistent

Fast



NFS Architecture
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“Mount” remote FS (host:path) as local directories



Virtual File System enables transparency
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Interfaces matter



VFS /Local FS

fd = open (“path”, flags)
read (fd, buf, n)
write (fd, buf, n)

close (£d)

Server maintains state that maps £d to inode, offset



Stateless NFS: Strawman 1
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read (“path”, buf, n)

write (“path”, buf, n)

—etoceled



Stateless NFS: Strawman 2
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read (“path”, offset, buf, n)

write (“path”, offset, buf, n)

—etoceled



Embed pathnames in syscalls?

AN WN ~

Program 1 on client 1 Program 2 on client 2

cHDIR ("dirl")

fd < opPeN ("f", READONLY) Time

RENAME ("dirl", "dir2")
RENAME ("dir3", "dirl") vy
READ (fd, buf, n)

 Should read refer to current diri/f ordir2/f ?

* In UNIX, it's dir2/f. How do we preserve in NFS?
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Stateless NFS (for real)

th = lookup (“path”, flags)
read (fh, offset, buf, n)
write (fh, offset, buf, n)

getattr (fth)

Implemented as Remote Procedure Calls (RPCs)



NFS File Handles (£h)

« Opaque identifier provider to client from server

* Includes all info needed to identify file/object on server
volume ID | inode # | generation #

e |t's a trick: “store” server state at the client!



NFS File Handles (and versioning)

Program 1 on client 1 Program 2 on client 2 Time

fd < oPeN ("f", READONLY)

UNLINK ("f")
fd <« oPeN ("f", CREATE)

A WN ~

READ (fd, buf, n) Y
« With generation #'s, client 2 continues to interact with
“correct” file, even while client 1 has changed “f”

« This versioning appears in many contexts,
e.g., MVCC (multiversion concurrency control) in DBs
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NFS example

fd = open(”/foo”, ...);
Send LOOKUP (rootdir FH, ”"foo”)

Receive LOOKUP request
look for ”"foo” in root dir
return foo’s FH + attributes

Receive LOOKUP reply
allocate file desc 1n open file table
store foo’s FH in table
store current file position (0)
return file descriptor to application
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NFS example

read (fd, buffer, MAX);
Index into open file table with fd
get NFS file handle (FH)
use current file position as offset
Send READ (FH, offset=0, count=MAX)

Receive READ request

use FH to get volume/inode num

read 1node from disk (or cache)
compute block location (using offset)
read data from disk (or cache)

return data to client

Receive READ reply
update file position (t+tbytes read)
set current file position = MAX
return data/error code to app
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NFS example

read (fd, buffer, MAX);
Same except offset=MAX and
set current file position = 2*MAX

read (fd, buffer, MAX);
Same except offset=2*MAX and
set current file position = 3*MAX

close (£d) ;
Just need to clean up local structures
Free descriptor “fd” in open file table
(No need to talk to server)
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Handling server failures

What to do when server is not responding?
— Retry again!

« set a timer; a reply before cancels the retry; else retry

s it safe to retry operations?
— NFS operations are idempotent

« the effect of multiple invocations is same as single one

— LOOKUP, READ, WRITE: message contains all that is
necessary to re-execute

— What is not idempotent?

* E.g., if we had INCREMENT
* Real example: MKDIR is not



Are remote == |ocal?
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(There ain’t no such thing as a free lunch)

With local FS, read sees data from “most recent’

write, even if performed by different process

— “Read/write coherence”, linearizability

nieve the same All operations appear to have )

e Ac

Perform all reads

-Huge cost: high [§

executed atomically in an order
that is consistent with the global
real-time ordering of operations.

\_ (Herliny & Wing, 1991) )

 And what if the server doesn’t return?
— Options: hang indefinitely, return ERROR



Caching

Lower latency, better scalability

Consistency

No longer one single copy of data,

to which all operations are serialized



Caching options

* Centralized control: Record status of clients
(which files open for reading/writing, what cached, ...)

« Read-ahead: Pre-fetch blocks before needed
* Write-through: All writes sent to server

» Write-behind: Writes locally buffered, send as batch



Cache consistency problem

Consistency challenges:

— When client writes, how do others caching data get

updated? (Callbacks, ...)
— Two clients concurrently write? (Locking, overwrite, ...)

C1
cache: F[v1]

C2
cache: F[v2]

C3
cache: empty
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Should server maintain per-client state?

Stateful Stateless
* Pros * Pros
— Smaller requests — Easy server crash recovery
— Simpler req processing — No open/close needed
— Better cache coherence, — Better scalability
file locking, etc.
« Cons * Cons
— Per-client state limits — Each request must be
scalability fully self-describing
— Fault-tolerance on state — Consistency is harder,

required for correctness e.g., no simple file locking



It’s all about the state, 'bout the state, ...

 Hard state: Don’t lose data
— Durability: State not lost

 Write to disk, or cold remote backup
 Exact replica or recoverable (DB: checkpoint + op log)

— Avalilability (liveness): Maintain online replicas

» Soft state: Performance optimization

— Then: Lose at will

— Now: Yes for correctness (safety), but how does recovery
impact availability (liveness)?



NFS

Stateless protocol
— Recovery easy: crashed == slow server
— Messages over UDP (unencrypted)

Read from server, caching in NFS client
NFSv2 was write-through (i.e., synchronous)

NFSv3 added write-behind
— Delay writes until c1lose or £sync from application



Exploring the consistency tradeoffs

* Write-to-read semantics too expensive
— Give up caching, require server-side state, or ...

» Close-to-open “session” semantics

— Ensure an ordering, but only between application
close and open, notall writes and reads.

— |If B opens after A closes, will see A's writes

— But if two clients open at same time? No guarantees

* And what gets written? “Last writer wins”



NFS Cache Consistency

* Recall challenge: Potential concurrent writers

« Cache validation:
— Get file's last modification time from server: getattr (fh)

— Both when first open file, then poll every 3-60 seconds

* If server’s last modification time has changed, flush dirty blocks
and invalidate cache

* When reading a block

— Validate: (current time — last validation time < threshold)

— |If valid, serve from cache. Otherwise, refresh from server -



Some problems...

e “Mixed reads” across version

— Areads block 1-10 from file, B replaces blocks 1-20,
A then keeps reading blocks 11-20.

* Assumes synchronized clocks. Not really correct.

— WEe'll learn about the notion of logical clocks later

» Writes specified by offset

— Concurrent writes can change offset



Server-side write buffering

AKX XXX XXX XXX XXX XXX XXX XXX XX XX XXX XXX XXX XXX XXX XXX XXX XX XXX XX XXXXX

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
222272222222 2222222222222222222222222222222222222222Z222Z222ZZZ7Z

write (fd, a buffer, size); // £ill first block with a’s
write (fd, b buffer, size); // fill second block with b’s
write (fd, c¢ buffer, size); // £ill third block with c’s

Expected:
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddaddad
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
CCCCCCCCcCcCcCccrececeeeeeeceeeceeeceeeeeeceececeeeceeecececececeeccecececcecececcecececcececcece

But assume server buffers 2" write, reports OK but then crashes:
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddaddad

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
CCccccccceccecceccecceccececcecceccececcecceccececcecceccecceccecceccecececceccececceccecece

Server must commit each write to stable (persistent) storage
before informing the client of success



When statefulness helps

Callbacks
Locks + Leases



NFS Cache Consistency

* Recall challenge: Potential concurrent writers
« Timestamp invalidation: NFS

« Callback invalidation: AFS, Sprite, Spritely NFS

« Server tracks all clients that have opened file

« On write, sends notification to clients if file changes;
client invalidates cache

* Leases: Gray & Cheriton ‘89, NFSv4



Locks

* Aclient can request a lock over a file / byte range
— Advisory: Well-behaved clients comply

— Mandatory: Server-enforced
 Client performs writes, then unlocks

* Problem: What if the client crashes?

— Solution: Keep-alive timer: Recover lock on timeout

* Problem: what if client alive but network route failed?

— Client thinks it has lock, server gives lock to other: “Split brain”



Leases

* Client obtains lease on file for read or write

— “"Alease is a ticket permitting an activity; the lease is
valid until some expiration time.”

« Read lease allows client to cache clean data

— Guarantee: no other client is modifying file

* Write lease allows safe delayed writes
— Client can locally modify then batch writes to server

— Guarantee: no other client has file cached



Using leases

* Client requests a lease
— May be implicit, distinct from file locking
— Issued lease has file version number for cache coherence

« Server determines if lease can be granted
— Read leases may be granted concurrently
— Write leases are granted exclusively

* |f conflict exists, server may send eviction notices
— Evicted write lease must write back
— Evicted read leases must flush/disable caching
— Client acknowledges when completed



Bounded lease term simplifies recovery
» Before lease expires, client must renew lease

* Client fails while holding a lease”

— Server waits until the lease expires, then unilaterally reclaims
— If client fails during eviction, server waits then reclaims

« Server fails while leases outstanding”? On recovery,

— Wait lease period + clock skew before issuing new leases
— Absorb renewal requests and/or writes for evicted leases



Requirements dictate design

Case Study: AFS



Andrew File System (CMU 1980s-)

« Scalability was key design goal
— Many servers, 10,000s of users

« QObservations about workload
— Reads much more common than writes
— Concurrent writes are rare / writes between users disjoint

« Interfaces in terms of files, not blocks
— Whole-file serving: entire file and directories
— Whole-file caching: clients cache files to local disk

« Large cache and permanent, so persists across reboots



AFS: Consistency

» Consistency: Close-to-open consistency
— No mixed writes, as whole-file caching / whole-file overwrites

— Update visibility: Callbacks to invalidate caches

* What about crashes or partitions?
— Client invalidates cache iff
» Recovering from failure
« Regular liveness check to server (heartbeat) fails.

— Server assumes cache invalidated if callbacks fail +
heartbeat period exceeded



Next lecture topic:
Time Synchronization and Logical Clocks
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