
Peer-to-Peer Systems and
Distributed Hash Tables

CS 240: Computing Systems and Concurrency
Lecture 8

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Selected content adapted from B. Karp, R. Morris.

1. Peer-to-Peer Systems
– Napster, Gnutella, BitTorrent, challenges

2. Distributed Hash Tables

3. The Chord Lookup Service

4. Concluding thoughts on DHTs, P2P

2

Today

• A distributed system architecture:
– No centralized control
– Nodes are roughly symmetric in function

• Large number of unreliable nodes

3

What is a Peer-to-Peer (P2P) system?

Node

Node

Node Node

Node

Internet

• High capacity for services through resource pooling:
– Many disks
– Many network connections
– Many CPUs

• Absence of a centralized server or servers may mean:
– Less chance of service overload as load increases
– Easier deployment
– A single failure won’t wreck the whole system
– System as a whole is harder to attack

4

Why might P2P be a win?

• Successful adoption in some niche areas –

1. Client-to-client (legal, illegal) file sharing
– Popular data but owning organization has no money

2. Digital currency: no natural single owner (Bitcoin)

3. Voice/video telephony: user to user anyway
– Issues: Privacy and control

5

P2P adoption

1. User clicks on download link
– Gets torrent file with content hash, IP addr of tracker

2. User’s BitTorrent (BT) client talks to tracker
– Tracker tells it list of peers who have file

3. User’s BT client downloads file from one or more peers

4. User’s BT client tells tracker it has a copy now, too

5. User’s BT client serves the file to others for a while

6

Example: Classic BitTorrent

Provides huge download bandwidth,
without expensive server or network links

7

The lookup problem

N1

N2 N3

N6N5

Publisher (N4)

Client
?Internet

put(“Star Wars.mov”,
[content])

get(“Star Wars.mov”)

8

Centralized lookup (Napster)

N1

N2 N3

N6N5

Publisher (N4)

Client

SetLoc(“Star Wars.mov”,
IP address of N4)

Lookup(“Star
Wars.mov”)DB

key=“Star Wars.mov”,
value=[content]

Simple, but O(N) state and a
single point of failure

9

Flooded queries (original Gnutella)

N1

N2 N3

N6N5

Publisher (N4)

Client

Lookup(“Star
Wars.mov”)

key=“Star Wars.mov”,
value=[content]

Robust, but O(N = number of peers)
messages per lookup

10

Routed DHT queries (Chord)

N1

N2 N3

N6N5

Publisher (N4)

Client

Lookup(H(audio
data))

key=“H(audio data)”,
value=[content]

Can we make it robust, reasonable
state, reasonable number of hops?

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

4. Concluding thoughts on DHTs, P2P

11

Today

12

What is a DHT (and why)?
• Local hash table:

key = Hash(name)
put(key, value)
get(key) à value

• Service: Constant-time insertion and lookup

How can I do (roughly) this across
millions of hosts on the Internet?

Distributed Hash Table (DHT)

13

What is a DHT (and why)?
• Distributed Hash Table:
key = hash(data)
lookup(key) à IP addr (Chord lookup service)
send-RPC(IP address, put, key, data)
send-RPC(IP address, get, key) à data

• Partitioning data in truly large-scale distributed
systems
– Tuples in a global database engine
– Data blocks in a global file system
– Files in a P2P file-sharing system

• App may be distributed over many nodes
• DHT distributes data storage over many nodes

14

Cooperative storage with a DHT

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

(DHash)

(Chord)

• BitTorrent can use DHT instead of (or with) a tracker

• BT clients use DHT:
– Key = ?
– Value = ?

15

BitTorrent over DHT

• BitTorrent can use DHT instead of (or with) a tracker

• BT clients use DHT:
– Key = file content hash (“infohash”)
– Value = ?

16

BitTorrent over DHT

• BitTorrent can use DHT instead of (or with) a tracker

• BT clients use DHT:
– Key = file content hash (“infohash”)
– Value = IP address of peer willing to serve file

• Can store multiple values (i.e. IP addresses) for a key

• Client does:
– get(infohash) to find other clients willing to serve
– put(infohash, my-ipaddr)to identify itself as willing

17

BitTorrent over DHT

• The DHT comprises a single giant tracker, less fragmented
than many trackers
– So peers more likely to find each other

• Maybe a classic tracker too exposed to legal & c. attacks

18

Why might DHT be a win for BitTorrent?

• API supports a wide range of applications
– DHT imposes no structure/meaning on keys

• Key-value pairs are persistent and global
– Can store keys in other DHT values
– And thus build complex data structures

19

Why the put/get DHT interface?

• Decentralized: no central authority

• Scalable: low network traffic overhead

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join

20

Why might DHT design be hard?

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service
– Basic design
– Integration with DHash DHT, performance

4. Concluding thoughts on DHTs, P2P

21

Today

• Efficient: O(log N) messages per lookup
– N is the total number of servers

• Scalable: O(log N) state per node

• Robust: survives massive failures

• Simple to analyze
22

Chord lookup algorithm properties

Interface: lookup(key) ® IP address

• Key identifier = SHA-1(key)

• Node identifier = SHA-1(IP address)

• SHA-1 distributes both uniformly

• How does Chord partition data?
– i.e., map key IDs to node IDs

23

Chord identifiers

24

Consistent hashing [Karger ‘97]

Key is stored at its successor: node with next-higher ID

K80

N32

N90

N105 K20

K5

Circular 7-bit
ID space

Key 5

Node 105

25

Chord: Successor pointers

K80

N32

N90

N105
N10

N60

N120

26

Basic lookup

K80

N32

N90

N105
N10

N60

N120

“N
90 has K80”

“Where is K80?”

27

Simple lookup algorithm
Lookup(key-id)
succ ß my successor
if my-id < succ < key-id // next hop
call Lookup(key-id) on succ

else // done
return succ

• Correctness depends only on successors

• Problem: Forwarding through successor is slow

• Data structure is a linked list: O(n)

• Idea: Can we make it more like a binary search?
– Need to be able to halve distance at each step

28

Improving performance

29

“Finger table” allows log N-time lookups

N80

½¼

1/8

1/16
1/32
1/64

30

Finger i Points to Successor of n+2i

N80

½¼

1/8

1/16
1/32
1/64

K112
N120

• A binary lookup tree rooted at every node
– Threaded through other nodes' finger tables

• This is better than simply arranging the nodes
in a single tree
– Every node acts as a root

• So there's no root hotspot
• No single point of failure
• But a lot more state in total

31

Implication of finger tables

32

Lookup with finger table
Lookup(key-id)
look in local finger table for

highest n: my-id < n < key-id
if n exists

call Lookup(key-id) on node n // next hop
else

return my successor // done

33

Lookups Take O(log N) Hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

• For a million nodes, it’s 20 hops

• If each hop takes 50 milliseconds, lookups take a
second

• If each hop has 10% chance of failure, it’s a couple of
timeouts

• So in practice log(n) is better than O(n) but not great

34

An aside: Is log(n) fast or slow?

35

Joining: Linked list insert

N36

N40

N25

1. Lookup(36) K30
K38

36

Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

37

Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

38

Notifymessages maintain
predecessors

N36

N40

N25

notify N36

notify N25

39

Stabilize message fixes successor

N36

N40

N25

stabilize

“My predecessor
is N36.”

✘

• Predecessor pointer allows link to new node
• Update finger pointers in the background
• Correct successors produce correct lookups

40

Joining: Summary

N36

N40

N25

K30
K38

K30

41

Failures may cause incorrect lookup

N120
N113

N102

N80

N85

N80 does not know correct
successor, so incorrect lookup

N10

Lookup(K90)

42

Successor lists
• Each node stores a list of its r immediate successors

– After failure, will know first live successor
– Correct successors guarantee correct lookups

• Guarantee is with some probability

43

Choosing successor list length r
• Assume one half of the nodes fail

• P(successor list all dead) = (½)r
– i.e., P(this node breaks the Chord ring)
– Depends on independent failure

• Successor list of size r = O(log N) makes this
probability 1/N: low for large N

44

Lookup with fault tolerance
Lookup(key-id)
look in local finger table and successor-list

for highest n: my-id < n < key-id
if n exists

call Lookup(key-id) on node n // next hop
if call failed,

remove n from finger table and/or
successor list

return Lookup(key-id)
else

return my successor // done

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service
– Basic design
– Integration with DHashDHT, performance

4. Concluding thoughts on DHTs, P2P

45

Today

46

The DHash DHT
• Builds key/value storage on Chord

• Replicates blocks for availability
– Stores k replicas at the k successors after the

block on the Chord ring

• Caches blocks for load balancing
– Client sends copy of block to each of the servers it

contacted along the lookup path

• Authenticates block contents

• Replicas are easy to find if successor fails
• Hashed node IDs ensure independent failure

48

DHash replicates blocks at r successors

N40

N10
N5

N20

N110

N99

N80
N60

N50

Block 17

N68

49

Experimental overview
• Quick lookup in large systems

• Low variation in lookup costs

• Robust despite massive failure

Goal: Experimentally confirm
theoretical results

50

Chord lookup cost is O(log N)

Number of Nodes

Av
er

ag
e

M
es

sa
ge

s
pe

r L
oo

ku
p

Constant is 1/2

51

Failure experiment setup
• Start 1,000 Chord servers

– Each server’s successor list has 20 entries
– Wait until they stabilize

• Insert 1,000 key/value pairs
– Five replicas of each

• Stop X% of the servers, immediately make 1,000 lookups

52

Massive failures have little impact

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)

Failed Nodes (Percent)

(1/2)6 is 1.6%

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service
– Basic design
– Integration with DHashDHT, performance

4. Concluding thoughts on DHT, P2P

53

Today

• Original DHTs (CAN, Chord, Kademlia, Pastry, Tapestry)
proposed in 2001-02

• Following 5-6 years saw proliferation of DHT-based
applications:
– Filesystems (e.g., CFS, Ivy, OceanStore, Pond, PAST)
– Naming systems (e.g., SFR, Beehive)
– DB query processing [PIER, Wisc]
– Content distribution systems (e.g., Coral)
– Distributed databases (e.g., PIER)

• Chord is one of the most cited papers in CS!

54

DHTs: Impact

Why don’t all services use P2P?
1. High latency and limited bandwidth

between peers (cf. between server cluster in
datacenter)

2. User computers are less reliable than
managed servers

3. Lack of trust in peers’ correct behavior
– Securing DHT routing hard, unsolved in practice

55

• Seem promising for finding data in large P2P systems
• Decentralization seems good for load, fault tolerance

• But: the security problems are difficult
• But: churn is a problem, particularly if log(n) is big

• So DHTs have not had the impact that many hoped for

56

DHTs in retrospective

• Consistent hashing
– Elegant way to divide a workload across machines
– Very useful in clusters: actively used today in Amazon

Dynamo, Apache Cassandra and other systems

• Replication for high availability, efficient recovery after
node failure

• Incremental scalability: “add nodes, capacity increases”

• Self-management: minimal configuration

• Unique trait: no single server to shut down/monitor
57

What DHTs got right

Next topic:
Scaling out Key-Value Storage:

Amazon Dynamo

58

