Concurrency in Go

CS 240 - Fall 2018
Rec. 2



Housekeeping

« Should have a working doMap() in Assignment 1



We Should Probably Teach you Map Reduce

The Hello World of Map Reduce:
Word Count

If we have time:
Let’s Make, a very basic, Google Maps from Raw Data

(A Solution to the Final Project for CS 245 — Databases)
You’re welcome



Abstract Map Reduce

map(key, value) -> list(<k’, v’>)
* Apply function to (key, value) pair
» Qutputs set of intermediate pairs

reduce(key, list<value>) -> <k’, v’>

* Applies aggregation function to values
* Qutputs result



Word Count — The Hello World of Map Reduce
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A Motivating Problem for Map Reduce

“Find me the closest Starbucks to KAUST.
Actually, I’'ll give you a place and something to look for,
and you find me the closest one.

Here’s a 1 TB text file ... good luck”

GPS Coordinates Site Name
(22.3, 39.1] Tim Hortons
22.2, 39.1] KAUST Library } In KAUST

'35.7, 139.7] Starbucks + In Tokyo, Japan

“It’s ok, | didn’t want to enjoy my weekend anyway”



A Motivating Problem for Map Reduce

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons 9 9 <
[22.2, 39.1] KAUST Library o0 o .
[35.7, 139.7] Starbucks

1_0.txt 1 1.ixt 1_2.txt

Map to
grids

Reduce to
single files




Split the File and Map Each Chunk Independently (1/2)

Mapping Nodes |

GPS Coordinates Site Name l
[22.3, 39.1] Tim Hortons //‘ Mapper

[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks
[42.0, 69.0] Chanak Train Stop

[22.2, 39.2] Burger King




Split the File and Map Each Chunk Independently (2/2)

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons
[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks
[42.0, 69.0] Chanak Train
[22.2, 39.2] Burger King

KEY <grid>: VALUE <locations and name>

:_I\Za?)r;i n_g_N_oae_s 1|
| :
|

Notice the duplicate grids (KEYS)

(1,2):

I :
/'/‘ Mapper =+ 22

(1,2)

(1,3):
(1,3):
(1,2):

[22.3,
[22.2,

[35.7,

[42.0,

[22.2,

(1,2): ...

39.1] Tim Hortons
39.1] KAUST Library

139.7] Starbucks

69.0] Chanak Train

39.2] Burger King



Collect the Mapper Results and Reduce to Single Files (1/2)

————————— 1
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: Reducing Nodes

[
(1,2): [22.3, 39.1] Tim Hortons I

(1,2): [22.2, 39.1] KAUST Library I
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(1,2):
(1,2):
(1,2): ...
. [35.7,

(1,2);

Collect the Mapper Results and Reduce to Single Files (2/2)

[22.3,
[22.2,

. [42.0,

[22.2,

(1,2): ...

39.1] Tim Hortons
39.1] KAUST Library

139.7] Starbucks

69.0] Chanak Train /
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: Reducing Nodes

1
I

KEY <grid>:
VELUES

[22
Reducer | -
(1.2)
[

Reducer
(1,3), 2,4)

[

<locations and names>,
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69.0] Chanak Train Stop,



How Hadoop Does it (1/2)
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How Hadoop Does it (2/2)
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What is Concurrency?

It’s like parallel that’s not in parallel



What is Parallelism?

Time
Sequential
F(X) I 44 F(X) =
f(Y) f(Y) =
Parallel
f(X) ] f(X) = A
f(Y) e f(Y) = B



Parallelism in Go

Demo: parallel.go



What is Concurrency?

Time
Sequential
'F(X) L . 'F(X) -
f(Y) f(Y) =
Concurrent
f(X) f(X) =

B
£(Y) £(Y)



Concurrency Could be Parallel but not Always

£(X)
£(Y)

£(X)
£(Y)
£(2)
(W)

Concurrent but not Parallel

Concurrent and Parallel

Time

£(X)
£(Y)

£(X)
£(Y)
£(2)
(W)

W > W P



Parallel is Always Concurrent

Parallel but not Concurrent? Time
f(X) o f(X) = A
f(Y) o f(Y) = B

Nope ... still concurrent

Parallel — Concurrent
Concurrent + Parallel



Why Care about Concurrency

If something concurrent but not parallel takes as much
time as something sequential, why make it concurrent?

>

_ Time
'F(X) & 'F(X) = A
f(Y) f(Y) = B
£(X) Concurrent £(X) = A
f(Y) f(Y) = B



Concurrency is a Design Pattern

“Concurrency is about dealing with lots of things at once.
Parallelism is about doing lots of things at once.”

- Rob Pike

"Concurrency is not Parallelism” by Rob Pike : https://talks.golang.org/2012/waza.slide#1



Distributed Systems are Unpredictable

Servers need to react to:
 QOthers servers
 Crashes
« Users



The Design Problem Concurrency Solves

Demo: concurrent.go



v Time

Making Bank Deposits Concurrent (1/5)
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v Time

Making Bank Deposits Concurrent (2/5)
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v Time

Making Bank Deposits Concurrent (3/5)
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v Time

Making Bank Deposits Concurrent (4/5)
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v Time

Making Bank Deposits Concurrent (5/5)
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v Time

Concurrent Bank Deposits! Yay? (1/5)
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v Time

Concurrent Bank Deposits! Yay? (2/5)
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v Time

Concurrent Bank Deposits! Yay? (3/5)
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v Time

Concurrent Bank Deposits! Yay? (4/5)
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v Time

Concurrent Bank Deposits! Yay? (5/5)
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Concurrency Needs to be Synchronized

Locks - limit access using shared memory
Channels - pass information using a queue



Channels, Locks and More

Demo: sync.go



Visualize Everything We’ve Learned

And also see many different methods of
achieving synchronization:
http://divan.qgithub.io/posts/go_concurrency_visualize/



http://divan.github.io/posts/go_concurrency_visualize/

