Concurrency in Go

CS 240 - Fall 2018
Rec. 2

Housekeeping

« Should have a working doMap() in Assignment 1

We Should Probably Teach you Map Reduce

The Hello World of Map Reduce:
Word Count

If we have time:
Let’s Make, a very basic, Google Maps from Raw Data

(A Solution to the Final Project for CS 245 — Databases)
You’re welcome

Abstract Map Reduce

map(key, value) -> list(<k’, v’>)
* Apply function to (key, value) pair
» Qutputs set of intermediate pairs

reduce(key, list<value>) -> <k’, v’>

* Applies aggregation function to values
* Qutputs result

Word Count — The Hello World of Map Reduce

y iy 1
- - - —I /1 BUS2 | 15 BUS3 :
-] BUS1 \

Bus 1 .' I
Input I Car1 1/ I | Output

M 1 el SN) : !

A Buscartrain |y LA /7| cAR1 | lear2 |
N | \‘\,.'I' , | CAR1 BUS 3

Bus Car Train - Traint. | Y%~ I
: — I (I CAR 2
Train Plane Car —«{ Train Plane Car " Plane 1 "/\.I \ I L TRAIN 2
Bus Bus Plane \{_ | L_Car 1/ Ay TRaN g | LT reain 2 By /| PLANE 2
| BusBusPlane | | | TRAIN 1 : 1/
i\\\ / I ‘\'\l‘ I I
I N | Bus 2 I Y | I
Plane 1 i PLANE 1 .

| J 1| poane 1 [P _PLANE 2 [1

I I : I

L — = — . ST Tmm T

Splitting Mapping Intermediate Reducing Combining

Splitting

A Motivating Problem for Map Reduce

“Find me the closest Starbucks to KAUST.
Actually, I’'ll give you a place and something to look for,
and you find me the closest one.

Here’s a 1 TB text file ... good luck”

GPS Coordinates Site Name
(22.3, 39.1] Tim Hortons
22.2, 39.1] KAUST Library } In KAUST

'35.7, 139.7] Starbucks + In Tokyo, Japan

“It’s ok, | didn’t want to enjoy my weekend anyway”

A Motivating Problem for Map Reduce

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons 9 9 <
[22.2, 39.1] KAUST Library o0 o .
[35.7, 139.7] Starbucks

1_0.txt 1 1.ixt 1_2.txt

Map to
grids

Reduce to
single files

Split the File and Map Each Chunk Independently (1/2)

Mapping Nodes |

GPS Coordinates Site Name l
[22.3, 39.1] Tim Hortons //‘ Mapper

[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks
[42.0, 69.0] Chanak Train Stop

[22.2, 39.2] Burger King

Split the File and Map Each Chunk Independently (2/2)

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons
[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks
[42.0, 69.0] Chanak Train
[22.2, 39.2] Burger King

KEY <grid>: VALUE <locations and name>

:_I\Za?)r;i n_g_N_oae_s 1|
| :
|

Notice the duplicate grids (KEYS)

(1,2):

I :
/'/‘ Mapper =+ 22

(1,2)

(1,3):
(1,3):
(1,2):

[22.3,
[22.2,

[35.7,

[42.0,

[22.2,

(1,2): ...

39.1] Tim Hortons
39.1] KAUST Library

139.7] Starbucks

69.0] Chanak Train

39.2] Burger King

Collect the Mapper Results and Reduce to Single Files (1/2)

————————— 1
I

: Reducing Nodes

[
(1,2): [22.3, 39.1] Tim Hortons I

(1,2): [22.2, 39.1] KAUST Library I

(1,2): tii.z, 39.2] Burger King I
(1,2): ... I (1 ,3), (2’4)

[

[

(1,2): ... Reducer | |,
: [35.7, 139.7] Starbucks I (1.2) I

| ’ :

; |

‘ |

: [

(1,3): [42.0, 69.0] Chanak Train I I
(1,3): Reducer |
[

[

(1,2):
(1,2):
(1,2): ...
. [35.7,

(1,2);

Collect the Mapper Results and Reduce to Single Files (2/2)

[22.3,
[22.2,

. [42.0,

[22.2,

(1,2): ...

39.1] Tim Hortons
39.1] KAUST Library

139.7] Starbucks

69.0] Chanak Train /

39.2] Burger King /

: Reducing Nodes

1
I

KEY <grid>:
VELUES

[22
Reducer | -
(1.2)
[

Reducer
(1,3), 2,4)

[

<locations and names>,

39.1] Tim Hortons,
39.1] KAUST Library,
39.2] Burger King

139.7] Starbucks,

69.0] Chanak Train Stop,

How Hadoop Does it (1/2)

RN N IS S S S S S S S - .- I

: Mapping Nodes
[
| Mapper |
[
: |
; |
[
: 1 @ 1 @ I
: 1_2.txt 2_4.txt [
[
1 : I
data.txt [
! Mapper |
: |
[
: |
\ TXT o TXT o I
| 1_3.txt 1_2.txt I
[
[

TXT o

data.txt

How Hadoop Does it (2/2)

RN N IS S S S S S S S - .-

Mapping Nodes

Reducing Nodes

Reducer

Reducer

[

[

| Mapper

[

[

: 7 @ xr
I 1_2.txt 2 4.txt

[

[

! Mapper

[

[

: TXT o TXT o
| 1_3.txt 1_2.txt

[

TXT Q TXT 0

1_3.txt 2_4.txt

What is Concurrency?

It’s like parallel that’s not in parallel

What is Parallelism?

Time
Sequential
F(X) I 44 F(X) =
f(Y) f(Y) =
Parallel
f(X)] f(X) = A
f(Y) e f(Y) = B

Parallelism in Go

Demo: parallel.go

What is Concurrency?

Time
Sequential
'F(X) L . 'F(X) -
f(Y) f(Y) =
Concurrent
f(X) f(X) =

B
£(Y) £(Y)

Concurrency Could be Parallel but not Always

£(X)
£(Y)

£(X)
£(Y)
£(2)
(W)

Concurrent but not Parallel

Concurrent and Parallel

Time

£(X)
£(Y)

£(X)
£(Y)
£(2)
(W)

W > W P

Parallel is Always Concurrent

Parallel but not Concurrent? Time
f(X) o f(X) = A
f(Y) o f(Y) = B

Nope ... still concurrent

Parallel — Concurrent
Concurrent + Parallel

Why Care about Concurrency

If something concurrent but not parallel takes as much
time as something sequential, why make it concurrent?

>

_ Time
'F(X) & 'F(X) = A
f(Y) f(Y) = B
£(X) Concurrent £(X) = A
f(Y) f(Y) = B

Concurrency is a Design Pattern

“Concurrency is about dealing with lots of things at once.
Parallelism is about doing lots of things at once.”

- Rob Pike

"Concurrency is not Parallelism” by Rob Pike : https://talks.golang.org/2012/waza.slide#1

Distributed Systems are Unpredictable

Servers need to react to:
 QOthers servers
 Crashes
« Users

The Design Problem Concurrency Solves

Demo: concurrent.go

v Time

Making Bank Deposits Concurrent (1/5)

[Add($10)

[

~.

Server

Database

v Time

Making Bank Deposits Concurrent (2/5)

[Add($10)

~.

[

)

Server

Read
x=0

read

$0

Database

v Time

Making Bank Deposits Concurrent (3/5)

[Add($10)

[

~.

Server

Read
Xx=0
X +=10
Write x

read

$0

$10

Database

10

v Time

Making Bank Deposits Concurrent (4/5)

[Add($10)

[

~.

Server

Read
x=0

X +=10
Write x

read

$0

$10

Database

10

v Time

Making Bank Deposits Concurrent (5/5)

Add($10)
% 1\ Server Database

)

Read rzrgd >
X=0 [
X +=10
Write x $10 > 20

v Time

Concurrent Bank Deposits! Yay? (1/5)

| Add$10)

[

D~

Server

Database

v Time

Concurrent Bank Deposits! Yay? (2/5)

[Add($10)

~.

[

)

Server

Read
x=0

read

$0

Database

v Time

Concurrent Bank Deposits! Yay? (3/5)

[Add($10)

~.

[

)

Server

Read
x=0

read

$0

Database

v Time

Concurrent Bank Deposits! Yay? (4/5)

| Add$10)

[

D~

)

Server

Read
x=0

X +=10
Write x

read

$0

$10

Database

10

v Time

Concurrent Bank Deposits! Yay? (5/5)

[Add($10)

[

~.

)

Server

Read
x=0

X +=10
Write x

read

$0

$10

Database

10

Concurrency Needs to be Synchronized

Locks - limit access using shared memory
Channels - pass information using a queue

Channels, Locks and More

Demo: sync.go

Visualize Everything We’ve Learned

And also see many different methods of
achieving synchronization:
http://divan.qgithub.io/posts/go_concurrency_visualize/

http://divan.github.io/posts/go_concurrency_visualize/

