
Two-Phase Commit

CS 240: Computing Systems and Concurrency
Lecture 10

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

• Safety and liveness properties

• Two-phase commit

2

Plan

Safety and liveness properties

3

• This is hard!
– How do we design fault-tolerant systems?
– How do we know if we’re successful?

• Often use “properties” that hold true for every
possible execution

• We focus on safety and liveness properties

4

Reasoning about fault tolerance

• Property: a predicate that is evaluated over a
run of the system (a trace)
– “every message that is received was previously

sent”

• Not everything you may want to say about a
system is a property:
– “the program sends an average of 50

messages in a run”

5

Properties

• “Bad things” don’t happen, ever
– No more than k processes are simultaneously in

the critical section
– Messages that are delivered are delivered in

causal order

• A safety property is “prefix closed”:
– if it holds in a run, it holds in every prefix

6

Safety properties

• “Good things” eventually happen
– A process that wishes to enter the critical section

eventually does so
– Some message is eventually delivered
– Eventual consistency: if a value doesn’t change, two

servers will eventually agree on its value

• Every run can be extended to satisfy a liveness
property
– If it does not hold in a prefix of a run, it does not mean

it may not hold eventually

7

Liveness properties

• “Good” and “bad” are application-specific

• Safety is very important in banking transactions
– May take some time to confirm a transaction

• Liveness is very important in social networking
sites
– See updates right away

8

Often a trade-off

Two-phase commit

9

• Reach agreement for distributed transactions in
the presence of failures

• Running example: Transfer money from A to B
– Debit at A, credit at B, tell the client “okay”
– Require both banks to do it, or neither
– Require that one bank never act alone

• This is an all-or-nothing atomic commit protocol

10

Objective

• For each distributed transaction T:
– one transaction coordinator (TC)
– a set of participants

• Coordinator knows participants; participants don’t
necessarily know each other

• Each process has access to a Distributed
Transaction Log (DT-Log) on stable storage

11

Model

• Each process pi has an input value votei:
– votei ∈ {Yes, No}

• Each process pi has output value decisioni:
– decisioni ∈ {Commit, Abort}

12

The setup

• AC-1: All processes that reach a decision reach the same one

• AC-2: A process cannot reverse its decision after it has reached
one

• AC-3: The Commit decision can only be reached if all processes
vote Yes

• AC-4: If there are no failures and all processes vote Yes, then the
decision will be Commit

• AC-5: If all failures are repaired and there are no more failures,
then all processes will eventually decide

13

Atomic Commit (AC) specification

• AC-1: All processes that reach a decision reach the same one

• AC-2: A process cannot reverse its decision after it has reached
one

• AC-3: The Commit decision can only be reached if all processes
vote Yes

• AC-4: If there are no failures and all processes vote Yes, then the
decision will be Commit

• AC-5: If all failures are repaired and there are no more failures,
then all processes will eventually decide

14

Atomic Commit (AC) specification

• We do not require all processes to reach a decision
• We do not even require all correct processes to reach

a decision (impossible to accomplish if links fail)

• AC-1: All processes that reach a decision reach the same one

• AC-2: A process cannot reverse its decision after it has reached
one

• AC-3: The Commit decision can only be reached if all processes
vote Yes

• AC-4: If there are no failures and all processes vote Yes, then the
decision will be Commit

• AC-5: If all failures are repaired and there are no more failures,
then all processes will eventually decide

15

Atomic Commit (AC) specification

• Avoids triviality
• Allows Abort even if all processes have voted yes

• AC-1: All processes that reach a decision reach the same one

• AC-2: A process cannot reverse its decision after it has reached
one

• AC-3: The Commit decision can only be reached if all processes
vote Yes

• AC-4: If there are no failures and all processes vote Yes, then the
decision will be Commit

• AC-5: If all failures are repaired and there are no more failures,
then all processes will eventually decide

16

Atomic Commit (AC) specification

Note: A process that does not vote Yes
can unilaterally abort

send_money(A, B, amount) {

Begin_Transaction();

if (A.balance - amount >= 0) {

A.balance = A.balance - amount;

B.balance = B.balance + amount;

Commit_Transaction();

} else {

Abort_Transaction();

}

}

17

Motivation: sending money

18

Single-server: ACID
• Atomicity: all parts of the transaction execute or none

(A’s decreases and B’s balance increases)

• Consistency: the transaction only commits if it preserves
invariants (A’s balance never goes below 0)

• Isolation: the transaction executes as if it executed by
itself (even if C is accessing A’s account, that will not
interfere with this transaction)

• Durability: the transaction’s effects are not lost after it
executes (updates to the balances will remain forever)

19

Distributed transactions?

• A client requests a transaction across servers: a
sequence of operations which are treated as atomic
(it is all or nothing!)
– Operations being performed on behalf of other

concurrent clients do not interfere
– Either all of the operations must be completed

successfully or they must have no effect at all in the
presence of failures

• How do we guarantee that all of the servers commit
the transactions or none commit the transactions?

1. C à TC: “go!”

Straw Man one-phase protocol

Client C

Transaction
Coordinator TC

Bank

go!

A B

20

1. C à TC: “go!”

2. TC à A: “debit $20!”
TC à B: “credit $20!”
TC à C: “okay”

• A, B perform actions on receipt of
messages

• TC repeats sending messages until
both A, B ack

Straw Man one-phase protocol

Client C

Transaction
Coordinator TC

Bank

go!

de
bit

 $2
0!

credit $20!

A B

okay

21

What could possibly go wrong?

1. Not enough money in A’s bank account?

2. B’s bank account no longer exists?

3. A or B crashes before receiving message?

4. The best-effort network to B fails?

5. TC crashes after it sends debit to A but before sending
to B?

22

Reasoning about the Straw Man protocol

• Note that TC, A, and B each have a notion of committing

• We want two properties:

1. Safety
– If one commits, no one aborts
– If one aborts, no one commits

2. Liveness
– If no failures and A and B can commit, action commits
– If failures, reach a conclusion ASAP

23

Safety versus liveness

1. C à TC: “go!”

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank

go!

A B

24

1. C à TC: “go!”

2. TC à A, B: “prepare!”

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank

prepare! prepare!

A B

25

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank A B

ye
s yes

26

commit! commit!

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank A B

27

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

5. TC àC: “okay” or “failed”

• A, B commit on receipt of commit
message

A correct atomic commit protocol

Client C

Transaction
Coordinator TC

Bank A B

okay

28

II. Sends votei to TC
if votei is NO then
decidei :=ABORT

halt

IV. if received COMMIT then
decidei := COMMIT

else
decidei := ABORT

halt

Two-Phase Commit (almost)
Transaction Coordinator (TC) Participant pi

I. Sends VOTE-REQ to all participants

III. TC votes
if all votes are YES then
decideTC := COMMIT
send COMMIT to all

else
decideTC := ABORT
send ABORT to all who voted YES

halt
29

• Satisfies AC-1 to AC-4

• But not AC-5 (at least “as is”)
– A process may be waiting for a message that may

never arrive
• Use Timeout Actions

– No guarantee that a recovered process will reach a
decision consistent with that of other processes

• Processes save protocol state in DT-Log

30

Reasoning about atomic commit

Where do hosts wait for messages?

II. pi is waiting for VOTE-REQ from TC

III. TC waits for “yes” or “no” from participants

IV. pi (who voted YES) waits for “commit” or “abort”
from TC

31

Timeout actions

II. pi is waiting for VOTE-REQ from TC
– Since it is has not cast its vote yet, can decide

ABORT and halt

32

Timeout actions

III. TC waits for “yes” or “no” from participants
– TC hasn’t yet sent any commit messages, so can

safely ABORT after a timeout
– Send ABORT to all participants which voted YES,

and halt

33

Timeout actions

IV. pi (who voted YES) waits for “commit” or “abort”
from TC

– Can it unilaterally abort?
– Can it unilaterally commit?
– pi cannot decide: must run a termination protocol

34

Timeout actions

• Consider B (A case is symmetric) waiting for commit or abort from TC
– Assume B voted yes (else, unilateral abort possible)

• B à A: “status?” A then replies back to B. Then:
1. (No reply from A): no decision, B waits for TC
2. A received commit or abort from TC: B agrees with TC’s decision
3. A hasn’t voted yet or voted no: both abort

• TC can’t have decided to commit

4. A voted yes: both must wait for the TC
• TC decided to commit if both replies received

• TC decided to abort if it timed out

35

Termination protocol

• What are the liveness and safety properties?
– Safety: if servers don’t crash and network between A and B is

reliable, all processes reach the same decision (in a finite number
of steps)

– Liveness: if failures are eventually repaired, then every
participant will eventually reach a decision

• Can resolve some timeout situations with guaranteed correctness

• Sometimes however A and B must block
– Due to failure of the TC or network to the TC

• But what will happen if TC, A, or B crash and reboot?

36

Reasoning about the
termination protocol

• Can’t back out of commit if already decided
– TC crashes just after sending “commit!”
– A or B crash just after sending “yes”

• If all nodes knew their state before crash, we
could use the termination protocol…
– Use write-ahead DT-Log to record “commit!” and

“yes” to stable storage

37

How to handle crash and reboot?

• If everyone rebooted and is reachable, TC can just check
for commit record on DT-Log and resend action

• TC: If no commit record on disk, abort
– You didn’t send any “commit!” messages

• A, B: If no yes record on disk, abort
– You didn’t vote “yes” so TC couldn’t have committed

• A, B: If yes record on disk, execute termination protocol
– This might block

38

Recovery protocol with non-volatile state

• This recovery protocol with non-volatile logging is
called Two-Phase Commit (2PC)

• Safety: All hosts that decide reach the same decision
– No commit unless everyone says “yes”

• Liveness: If no failures and all say “yes” then commit
– But if failures then 2PC might block
– TC must be up to decide

• Doesn’t tolerate faults well: must wait for repair

39

Two-Phase Commit

Next topic
Reconfiguration and View Change

Protocols

40

