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• Safety and liveness properties

• Two-phase commit
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Safety and liveness properties
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• This is hard!
– How do we design fault-tolerant systems?
– How do we know if we’re successful?

• Often use “properties” that hold true for every 
possible execution

• We focus on safety and liveness properties
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Reasoning about fault tolerance



• Property: a predicate that is evaluated over a 
run of the system (a trace)
– “every message that is received was previously 

sent”

• Not everything you may want to say about a 
system is a property:
– “the program sends an average of 50 

messages in a run”
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Properties



• “Bad things” don’t happen, ever
– No more than k processes are simultaneously in 

the critical section
– Messages that are delivered are delivered in 

causal order

• A safety property is “prefix closed”:
– if it holds in a run, it holds in every prefix
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Safety properties



• “Good things” eventually happen
– A process that wishes to enter the critical section 

eventually does so
– Some message is eventually delivered
– Eventual consistency: if a value doesn’t change, two 

servers will eventually agree on its value

• Every run can be extended to satisfy a liveness 
property
– If it does not hold in a prefix of a run, it does not mean 

it may not hold eventually
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Liveness properties



• “Good” and “bad” are application-specific

• Safety is very important in banking transactions
– May take some time to confirm a transaction

• Liveness is very important in social networking 
sites
– See updates right away
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Often a trade-off



Two-phase commit
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• Reach agreement for distributed transactions in 
the presence of failures

• Running example: Transfer money from A to B
– Debit at A, credit at B, tell the client “okay”
– Require both banks to do it, or neither
– Require that one bank never act alone

• This is an all-or-nothing atomic commit protocol
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Objective



• For each distributed transaction T:
– one transaction coordinator (TC)
– a set of participants

• Coordinator knows participants; participants don’t 
necessarily know each other

• Each process has access to a Distributed 
Transaction Log (DT-Log) on stable storage
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Model



• Each process pi has an input value votei:
– votei ∈ {Yes, No}

• Each process pi has output value decisioni:
– decisioni ∈ {Commit, Abort}
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The setup



• AC-1: All processes that reach a decision reach the same one

• AC-2: A process cannot reverse its decision after it has reached 
one

• AC-3: The Commit decision can only be reached if all processes 
vote Yes

• AC-4: If there are no failures and all processes vote Yes, then the 
decision will be Commit

• AC-5: If all failures are repaired and there are no more failures, 
then all processes will eventually decide
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Atomic Commit (AC) specification



• AC-1: All processes that reach a decision reach the same one

• AC-2: A process cannot reverse its decision after it has reached 
one

• AC-3: The Commit decision can only be reached if all processes 
vote Yes

• AC-4: If there are no failures and all processes vote Yes, then the 
decision will be Commit

• AC-5: If all failures are repaired and there are no more failures, 
then all processes will eventually decide
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Atomic Commit (AC) specification

• We do not require all processes to reach a decision
• We do not even require all correct processes to reach 

a decision (impossible to accomplish if links fail)



• AC-1: All processes that reach a decision reach the same one

• AC-2: A process cannot reverse its decision after it has reached 
one

• AC-3: The Commit decision can only be reached if all processes 
vote Yes

• AC-4: If there are no failures and all processes vote Yes, then the 
decision will be Commit

• AC-5: If all failures are repaired and there are no more failures, 
then all processes will eventually decide
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Atomic Commit (AC) specification

• Avoids triviality
• Allows Abort even if all processes have voted yes



• AC-1: All processes that reach a decision reach the same one

• AC-2: A process cannot reverse its decision after it has reached 
one

• AC-3: The Commit decision can only be reached if all processes 
vote Yes

• AC-4: If there are no failures and all processes vote Yes, then the 
decision will be Commit

• AC-5: If all failures are repaired and there are no more failures, 
then all processes will eventually decide
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Atomic Commit (AC) specification

Note: A process that does not vote Yes
can unilaterally abort



send_money(A, B, amount) {

Begin_Transaction();

if (A.balance - amount >= 0) {

A.balance = A.balance - amount;

B.balance = B.balance + amount;

Commit_Transaction(); 

} else {

Abort_Transaction(); 

}

} 
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Motivation: sending money
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Single-server: ACID
• Atomicity: all parts of the transaction execute or none 

(A’s decreases and B’s balance increases)

• Consistency: the transaction only commits if it preserves 
invariants (A’s balance never goes below 0)

• Isolation: the transaction executes as if it executed by 
itself (even if C is accessing A’s account, that will not 
interfere with this transaction)

• Durability: the transaction’s effects are not lost after it 
executes (updates to the balances will remain forever)
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Distributed transactions?

• A client requests a transaction across servers: a 
sequence of operations which are treated as atomic 
(it is all or nothing!)
– Operations being performed on behalf of other 

concurrent clients do not interfere
– Either all of the operations must be completed 

successfully or they must have no effect at all in the 
presence of failures

• How do we guarantee that all of the servers commit 
the transactions or none commit the transactions?



1. C à TC: “go!”

Straw Man one-phase protocol

Client C

Transaction 
Coordinator TC

Bank

go!

A B
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1. C à TC: “go!”

2. TC à A: “debit $20!”
TC à B: “credit $20!”
TC à C: “okay”

• A, B perform actions on receipt of 
messages

• TC repeats sending messages until 
both A, B ack

Straw Man one-phase protocol

Client C

Transaction 
Coordinator TC

Bank

go!

de
bit

 $2
0!

credit $20!

A B

okay
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What could possibly go wrong?

1. Not enough money in A’s bank account?

2. B’s bank account no longer exists?

3. A or B crashes before receiving message?

4. The best-effort network to B fails?

5. TC crashes after it sends debit to A but before sending 
to B?
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Reasoning about the Straw Man protocol



• Note that TC, A, and B each have a notion of committing

• We want two properties:

1. Safety
– If one commits, no one aborts
– If one aborts, no one commits

2. Liveness
– If no failures and A and B can commit, action commits
– If failures, reach a conclusion ASAP
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Safety versus liveness



1. C à TC: “go!”

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank

go!

A B
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1. C à TC: “go!”

2. TC à A, B: “prepare!”

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank

prepare! prepare!

A B
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1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank A B

ye
s yes
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commit! commit!

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank A B
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1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

5. TC àC: “okay” or “failed”

• A, B commit on receipt of commit 
message

A correct atomic commit protocol

Client C

Transaction 
Coordinator TC

Bank A B

okay
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II. Sends votei to TC
if votei is NO then
decidei :=ABORT

halt

IV. if received COMMIT then
decidei := COMMIT

else
decidei := ABORT

halt

Two-Phase Commit (almost)
Transaction Coordinator (TC) Participant pi

I. Sends VOTE-REQ to all participants

III. TC votes
if all votes are YES then
decideTC := COMMIT
send COMMIT to all

else
decideTC := ABORT
send ABORT to all who voted YES

halt
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• Satisfies AC-1 to AC-4

• But not AC-5 (at least “as is”)
– A process may be waiting for a message that may 

never arrive
• Use Timeout Actions

– No guarantee that a recovered process will reach a 
decision consistent with that of other processes

• Processes save protocol state in DT-Log
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Reasoning about atomic commit



Where do hosts wait for messages?

II. pi is waiting for VOTE-REQ from TC

III. TC waits for “yes” or “no” from participants

IV. pi (who voted YES) waits for “commit” or “abort” 
from TC
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Timeout actions



II. pi is waiting for VOTE-REQ from TC
– Since it is has not cast its vote yet, can decide 

ABORT and halt
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Timeout actions



III. TC waits for “yes” or “no” from participants
– TC hasn’t yet sent any commit messages, so can 

safely ABORT after a timeout
– Send ABORT to all participants which voted YES, 

and halt
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Timeout actions



IV. pi (who voted YES) waits for “commit” or “abort” 
from TC

– Can it unilaterally abort?
– Can it unilaterally commit?
– pi cannot decide: must run a termination protocol
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Timeout actions



• Consider B (A case is symmetric) waiting for commit or abort from TC
– Assume B voted yes (else, unilateral abort possible)

• B à A: “status?” A then replies back to B. Then:
1. (No reply from A): no decision, B waits for TC
2. A received commit or abort from TC: B agrees with TC’s decision
3. A hasn’t voted yet or voted no: both abort

• TC can’t have decided to commit

4. A voted yes: both must wait for the TC
• TC decided to commit if both replies received

• TC decided to abort if it timed out
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Termination protocol



• What are the liveness and safety properties?
– Safety: if servers don’t crash and network between A and B is 

reliable, all processes reach the same decision (in a finite number 
of steps)

– Liveness: if failures are eventually repaired, then every 
participant will eventually reach a decision

• Can resolve some timeout situations with guaranteed correctness

• Sometimes however A and B must block
– Due to failure of the TC or network to the TC

• But what will happen if TC, A, or B crash and reboot?
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Reasoning about the
termination protocol



• Can’t back out of commit if already decided
– TC crashes just after sending “commit!”
– A or B crash just after sending “yes”

• If all nodes knew their state before crash, we 
could use the termination protocol…
– Use write-ahead DT-Log to record “commit!” and 

“yes” to stable storage
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How to handle crash and reboot?



• If everyone rebooted and is reachable, TC can just check 
for commit record on DT-Log and resend action

• TC: If no commit record on disk, abort
– You didn’t send any “commit!” messages

• A, B: If no yes record on disk, abort
– You didn’t vote “yes” so TC couldn’t have committed

• A, B: If yes record on disk, execute termination protocol
– This might block
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Recovery protocol with non-volatile state



• This recovery protocol with non-volatile logging is 
called Two-Phase Commit (2PC)

• Safety: All hosts that decide reach the same decision
– No commit unless everyone says “yes”

• Liveness: If no failures and all say “yes” then commit
– But if failures then 2PC might block
– TC must be up to decide

• Doesn’t tolerate faults well: must wait for repair
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Two-Phase Commit



Next topic
Reconfiguration and View Change 

Protocols
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