
Consensus and Paxos

CS 240: Computing Systems and Concurrency
Lecture 12

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

1. Consensus in distributed systems

2. FLP impossibility

3. Paxos

2

Today

• Let different replicas assume role of primary over time

• System moves through a sequence of views

• How do the nodes agree on view / primary?

3

Recall the use of Views

P

P
P

View #1, #4, …

View #2, #5, …

View #3, #6, …

Definition:

1. A general agreement about something

2. An idea or opinion that is shared by all the
people in a group

4

Consensus

Given a set of processes, each with an initial value:

• Termination: All non-faulty processes eventually
decide on a value

• Agreement: All processes that decide do so on
the same value

• Validity: The value that has been decided must
have been proposed by some process

5

Consensus

Group of servers attempting:

• Make sure all servers in group receive the same updates
in the same order as each other

• Maintain own lists (views) on who is a current member of
the group, and update lists when somebody leaves/fails

• Elect a leader in group, and inform everybody

• Ensure mutually exclusive (one process at a time only)
access to a critical resource like a file

6

Consensus used in systems

Can we achieve
consensus?

7

• Network model:
– Synchronous (time-bounded delay) or

asynchronous (arbitrary delay)

– Reliable or unreliable communication

– Unicast or multicast communication

• Node failures:
– Crash (correct/dead) or Byzantine (arbitrary)

8

Step one: Define your system model

(Left options indicate an “easier” setting.)

• Network model:
– Synchronous (time-bounded delay) or

asynchronous (arbitrary delay)

– Reliable or unreliable communication

– Unicast or multicast communication

• Node failures:
– Crash (correct/dead) or Byzantine (arbitrary)

9

Step one: Define your system model

(Left options indicate an “easier” setting.)

Consensus is
impossible

10

1. Consensus in distributed systems

2. FLP impossibility

3. Paxos

11

Today

• No deterministic
1-crash-robust
consensus algorithm
exists with
asynchronous
communication

12

“FLP” result

• Only 1 failure
– Also impossible for more failures

• For “weak” consensus (only some process needs to decide)
– Also impossible for real consensus

• For reliable communication
– Also impossible for unreliable communication

• For only two states: 0 and 1
– Also impossible for more failures

• For crash failures
– Also impossible for Byzantine failures

13

FLP’s weak assumptions

• Deterministic actions at each node

• Asynchronous network communication

• All “runs” must eventually achieve consensus

14

FLP’s strong assumptions

• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state
[1,1,1,1,1] → 1
[1,1,1,1,0] → ?
[1,1,1,0,0] → ?
[1,1,0,0,0] → ?
[1,0,0,0,0] → 0

15

Main technical approach

Must exist two
configurations

here which differ
in decision

• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state
[1,1,1,1,1] → 1
[1,1,1,1,0] → 1
[1,1,1,0,0] → 1
[1,1,0,0,0] → 0
[1,0,0,0,0] → 0

16

Main technical approach

Assume decision differs
between these two processes

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →
[1,1,1,0,0] →

17

Main technical approach

One of these configurations must be “bi-valent”
(i.e., undecided):

Both futures possible

1 | 0
0

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →
[1,1,1,0,0] →

• Inherent non-determinism from asynchronous network

• Key result: All bi-valent states can remain in bi-valent
states after performing some work

18

Main technical approach

1
0 | 1

One of these configurations must be “bi-valent”
(i.e., undecided):

Both futures possible

1. System thinks process p failed, adapts to it…

2. But no, p was merely slow, not failed…
(Can’t tell the difference between slow and failed.)

3. System think process q failed, adapts to it…

4. But no, q was merely slow, not failed…

5. Repeat ad infinitum …

19

Staying bi-valent forever

Consensus is
impossible

But, we achieve consensus all the time…

20

• Deterministic actions at each node
– Randomized algorithms can achieve consensus

• Asynchronous network communication
– Synchronous or even partial synchrony is sufficient

• All “runs” must eventually achieve consensus
– In practice, many “runs” achieve consensus quickly
– In practice, “runs” that never achieve consensus happen

vanishingly rarely
• Both are true with good system designs

21

FLP’s strong assumptions

Consensus is
possible

With Paxos!

22

1. Consensus in distributed systems

2. FLP impossibility

3. Paxos

23

Today

Given a set of processes, each with an initial value:

• Termination: All non-faulty processes eventually
decide on a value ß Good thing that eventually
should happen

• Agreement: All processes that decide do so on the
same value ß Bad thing that should never happen

• Validity: The value that has been decided must have
been proposed by some process ß Bad thing that
should never happen

24

Consensus

Safety (bad things never happen)

Liveness (good things eventually happen)

25

Recall: Safety vs liveness properties

Safety
– Only a single value is chosen

– Only chosen values are learned by processes

– Only a proposed value can be chosen

Liveness
– Some proposed value eventually chosen if fewer than half

of processes fail

– If value is chosen, a process eventually learns it

26

Paxos properties

agreement

validity

termination

• Paxos is always safe

• Paxos is very often live
– But not always live

27

Paxos’ safety and liveness

Roles of a process

• Three conceptual roles
– Proposers propose values

– Acceptors accept values, where chosen if majority accept

– Learners learn the outcome (chosen value)

• In reality, a process can play any/all roles

28

Strawman

• 3 proposers, 1 acceptor
– Acceptor accepts first value received

– No liveness on failure

• 3 proposals, 3 acceptors

– Accept first value received, acceptors choose common
value known by majority

– But no such majority is guaranteed

29

Paxos

• Each acceptor accepts multiple proposals
– Hopefully one of multiple accepted proposals will have a

majority vote (and we determine that)

– If not, rinse and repeat (more on this)

• How do we select among multiple proposals?
– Ordering: proposal is tuple (proposal #, value) = (n, v)

– Proposal # strictly increasing, globally unique

– Globally unique?
• Trick: set low-order bits to proposer’s ID

30

Paxos Protocol Overview
• Proposers:

1. Choose a proposal number n

2. Ask acceptors if any accepted proposals with na < n
3. If existing proposal va returned, propose same value (n, va)

4. Otherwise, propose own value (n, v)

Note altruism: goal is to reach consensus, not “win”

• Acceptors try to accept value with highest proposal n

• Learners are passive and wait for the outcome

31

Paxos Phase 1
• Proposer:

– Choose proposal number n, send <prepare, n> to acceptors

• Acceptors:
– If n > nh

• nh = n ← promise not to accept any new proposals n’ < n
• If no prior proposal accepted

– Reply < promise, n, Ø >
• Else

– Reply < promise, n, (na , va) >
– Else

• Reply < prepare-failed >
32

Paxos Phase 2

• Proposer:
– If receive promise from majority of acceptors,

• Determine va returned with highest na, if exists
• Send <accept, (n, va || v)> to acceptors

• Acceptors:
– Upon receiving <accept, (n, v)>, if n ≥ nh,

• Accept proposal and notify learner(s)
na = nh = n
va = v

33

Paxos Phase 3
• Learners need to know which value chosen

• Approach #1
– Each acceptor notifies all learners
– More expensive

• Approach #2
– Elect a “distinguished learner”
– Acceptors notify elected learner, which informs others
– Failure-prone

34

35

Paxos: Well-behaved Run

<accepted, (1 ,v1)>

1

2

n

.

.

.

1 1

2

n

.

.

.
<prepare, 1>

1

<promise, 1>

1

2

n

.

.

.

<accept,
(1,v1)>

decide
v1

• Intuition: if proposal with value v decided, then
every higher-numbered proposal issued by any
proposer has value v.

36

Paxos is safe

Majority of
acceptors

accept (n, v):

v is decided

Next prepare request
with proposal n+1

Race condition leads to liveness problem

Completes phase 1
with proposal n0

37

Starts and completes phase 1
with proposal n1 > n0

Performs phase 2,
acceptors reject

Restarts and completes phase 1
with proposal n2 > n1

Process 0 Process 1

Performs phase 2,
acceptors reject

… can go on indefinitely …

• Described for a single round of consensus
• Often implemented with nodes playing all roles
• Always safe

– Quorum intersection
• Often live

– “FLP Scenario” prevents it from always being live
• Acceptors accept multiple values

– But only one value is ultimately chosen
• Once a value is accepted by a majority it is chosen
• Can tolerate failures f < N / 2 (aka, 2f+1 nodes)

38

Paxos summary

• Terminology is a mess

• Paxos loosely, and confusingly defined…

• We’ll stick with
– Basic Paxos

– Multi-Paxos

39

Flavors of Paxos

• Run the full protocol each time
– e.g., for each slot in the command log

• Takes 2 rounds until a value is chosen

• “FLP Scenario” is dueling proposers

40

Flavors of Paxos: Basic Paxos

• Elect a leader and have it run the 2nd phase directly
– e.g., for each slot in the command log
– Leader election uses Basic Paxos

• Takes 1 round until a value is chosen
– Faster than Basic Paxos

• “FLP Scenario” is dueling proposers during leader
election
– Rarer than Basic Paxos

• Used extensively in practice!
41

Flavors of Paxos: Multi-Paxos

• Consensus: Terminating agreement on a valid proposal

• Consensus is impossible to always achieve
– FLP result

• Consensus is possible to achieve in practice
– With Multi-Paxos

• Mostly happens in a single round to the nearest quorum

• Sometimes takes a single round to a further quorum

• Rarely takes multiple rounds to elect a new leader and for that node
to get the request accepted

• Runs exist where no new leader is ever elected

42

Consensus takeaways

Next topic:
Consensus protocol with group membership

+ leader election at core

RAFT (assignment 3)

43

