Consensus and Paxos

alllauc Ellal) deals

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 12

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.



Today
1. Consensus in distributed systems
2. FLP impossibility

3. Paxos



Recall the use of Views

* Let different replicas assume role of primary over time
« System moves through a sequence of views

* How do the nodes agree on view / primary?

EEEEELE
View #3, #6, ... ;

CEEEEEE

, View #1, #4, ...
c3 [ ! ’

View #2, #5, ...




Consensus
Definition:
1. A general agreement about something

2. An idea or opinion that is shared by all the
people in a group



Consensus
Given a set of processes, each with an initial value:

« Termination: All non-faulty processes eventually
decide on a value

« Agreement: All processes that decide do so on
the same value

 Validity: The value that has been decided must
have been proposed by some process



Consensus used In systems

Group of servers attempting:

Make sure all servers in group receive the same updates
In the same order as each other

Maintain own lists (views) on who is a current member of
the group, and update lists when somebody leaves/fails

Elect a leader in group, and inform everybody

Ensure mutually exclusive (one process at a time only)
access to a critical resource like a file



Can we achieve
consensus?



Step one: Define your system model

Network model:

— Synchronous (time-bounded delay) or
asynchronous (arbitrary delay)

— Reliable or unreliable communication

— Unicast or multicast communication

Node failures:

— Crash (correct/dead) or Byzantine (arbitrary)

(Left options indicate an “easier” setting.)



Step one: Define your system model

Network model:

— Synchronous (time-bounded delay) or

— or unreliable communication

— or multicast communication

Node failures:

(correct/dead) or Byzantine (arbitrary)

(Left options indicate an “easier” setting.)



Consensus is
Impossible



Today

1. Consensus in distributed systems
2. FLP impossibility

3. Paxos

11



“FLP” result

No deterministic
1-crash-robust
consensus algorithm
exists with
asynchronous
communication

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND
MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”
problem.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols-
protocol architecture, C.2.4 [Computer-Communication Networks]: Distributed Systems-distributed
applications; distributed databases; network operating systems; C.4 [Performance of Systems]: Reliabil-
ity, Availability, and Serviceability; F.1.2 [Computation by Abstract Devices]: Modes of Computation-
parallelism; H.2.4 [Database Management): Systems-distributed systems; transaction processing

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability

12



FLP’s weak assumptions

* Only 1 failure
— Also impossible for more failures
For “weak” consensus (only some process needs to decide)
— Also impossible for real consensus
For reliable communication
— Also impossible for unreliable communication
For only two states: 0 and 1
— Also impossible for more failures
For crash failures
— Also impossible for Byzantine failures



FLP’s strong assumptions

 Deterministic actions at each node
» Asynchronous network communication

 All “runs” must eventually achieve consensus



Main technical approach

* |nitial state of system can end in decision “0” or “1

* Consider 5 processes, each in some initial state

(1,1,1,11] — 1

' 1,1,1,10] — ? Must exist two
'111001 — ? configurations
R, ' here which differ
L 505050 1 ? in decision
11,0,000] — 0




Main technical approach
* |nitial state of system can end in decision “0” or “1”

* Consider 5 processes, each in some initial state

1,1,1,1,1] —

1,1,1,10] —

- ’1'0’0 ] — Assume decision differs
1,1,0/0,0] — 0 between these two processes
1,0,0,00] —- O



Main technical approach

 Goal: Consensus holds in face of 1 failure

One of these configurations must be “bi-valent”

(i.e., undecided):
Both futures possible

[1,1
[1,1

0,0] — 1]0
00] — 0

17



Main technical approach

Goal: Consensus holds in face of 1 failure

One of these configurations must be “bi-valent”

(i.e., undecided):
Both futures possible

[1,1
[1,1

00] — 1
00] — 01

Inherent non-determinism from asynchronous network

Key result: All bi-valent states can remain in bi-valent
states after performing some work



Staying bi-valent forever

1.

2.

System thinks process p failed, adapts to it...

But no, p was merely slow, not failed...
(Can't tell the difference between slow and failed.)

System think process q failed, adapts to it...
But no, g was merely slow, not failed...

Repeat ad infinitum ...



Consensus is
Impossible

But, we achieve consensus all the time...



FLP’s strong assumptions

 Deterministic actions at each node

— Randomized algorithms can achieve consensus

» Asynchronous network communication

— Synchronous or even partial synchrony is sufficient

* All “runs” must eventually achieve consensus

— In practice, many “runs” achieve consensus quickly

— In practice, “runs” that never achieve consensus happen
vanishingly rarely

» Both are true with good system designs



Consensus is
possible

With Paxos!



Today

1. Consensus in distributed systems
2. FLP impossibility

3. Paxos

23



Consensus

Given a set of processes, each with an initial value:

* Termination: All non-faulty processes eventually
decide on a value

» Agreement: All processes that decide do so on the
same value

 Validity: The value that has been decided must have
been proposed by some process



Recall: Safety vs liveness properties

Safety (bad things never happen)

Liveness (good things eventually happen)



Paxos properties

Safety
— Only a single value is chosen <—lagreement
— Only chosen values are learned by processes

— Only a proposed value can be chosen <—validity

Liveness

— Some proposed value eventually chosen if fewer than half

of processes fail
— If value is chosen, a process eventually learns it
™ termination



Paxos’ safety and liveness

» Paxos is always safe

» Paxos is very often live
—But not live



Roles of a process

Three conceptual roles

propose values
accept values, where chosen if majority accept

learn the outcome (chosen value)

* In reality, a process can play any/all roles



Strawman

3 proposers, 1 acceptor

— Acceptor accepts first value received

3 proposals, 3 acceptors

— Accept first value received, acceptors choose common
value known by majority



Paxos

« Each acceptor accepts

— Hopefully one of multiple accepted proposals will have a
majority vote (and we determine that)

— If not, rinse and repeat (more on this)

* How do we select among multiple proposals?
— Ordering: proposal is tuple
— Proposal # strictly increasing, globally unique

— Globally unique?

* Trick: set low-order bits to proposer’s ID



Paxos Protocol Overview

1. Choose a proposal number n
2. Ask acceptors if any accepted proposals with n, <n
3. If existing proposal v, returned, propose same value (n, v,)

4. Otherwise, propose own value (n, v)
Note . goal is to reach consensus, not “win”

try to accept value with highest proposal n

are passive and wait for the outcome



Paxos Phase 1

— Choose proposal number n, send <prepare, n> to acceptors

— Ifn>n,
* N, =N <« promise not to accept any new proposals n'<n
* |f no prior proposal accepted
— Reply < promise, n, @ >
 Else
— Reply < promise, n, (n, v,) >
— Else
* Reply < prepare-failed >

32



Paxos Phase 2

— If receive promise from of acceptors,

« Determine v, returned with highest n,, if exists
« Send <accept, (n, v, || v)> to acceptors

— Upon receiving <accept, (n, v)>, ifn=n,,
 Accept proposal and notify learner(s)
n,=n,=n
V, =V



Paxos Phase 3
need to know which value chosen

* Approach #1
— Each acceptor notifies all learners

— More expensive

* Approach #2
— Elect a “distinguished learner”
— Acceptors notify elected learner, which informs others

— Failure-prone



Paxos: Well-behaved Run

O—@ —0O0—0— 0
\./ \. ®

<accept, _ _ >decide
(1 ,V1)> . . Vi

@@

<accepted, (1 ,v,)>

<prepare, 1> <promise, 1>

35



Paxos is safe

* |ntuition: if proposal with value v decided, then
every higher-numbered proposal issued by any
proposer has value v.

Majority of
acceptors
accept (n, v):

Next prepare request
with proposal n+1

v IS decided



Race condition leads to liveness problem

Process O Process 1

Completes phase 1

with proposal n0 Starts and completes phase 1

with proposal n1 > n0

Performs phase 2,
acceptors reject

Restarts and completes phase 1
with proposal n2 > n1

Performs phase 2,
acceptors reject

... can go on indefinitely ...



Paxos summary

» Described for a single round of consensus

« Often implemented with nodes playing all roles

« Always safe

— Quorum intersection

« Often live

— “FLP Scenario” prevents it from always being live

» Acceptors accept multiple values

— But only one value is ultimately chosen

« Once a value is accepted by a majority it is chosen
* Can tolerate failuresf<N /2 (aka, )



Flavors of Paxos

* Terminology is a mess

« Paxos loosely, and confusingly defined...

o We'll stick with
— Basic Paxos

— Multi-Paxos



Flavors of Paxos: Basic Paxos

* Run the full protocol each time

— e.g., for each slot in the command log

 Takes 2 rounds until a value Is chosen

« “"FLP Scenario” is dueling proposers



Flavors of Paxos: Multi-Paxos

Elect a leader and have it run the 2"d phase directly
— e.g., for each slot in the command log

— Leader election uses Basic Paxos

Takes 1 round until a value is chosen

— Faster than Basic Paxos

“FLP Scenario” is dueling proposers during leader
election

— Rarer than Basic Paxos

Used extensively in practice!



Consensus takeaways

Consensus: Terminating agreement on a valid proposal

Consensus is impossible to achieve
— FLP result
Consensus is to achieve in practice

— With Multi-Paxos

» Mostly happens in a single round to the nearest quorum
« Sometimes takes a single round to a further quorum

 Rarely takes multiple rounds to elect a new leader and for that node
to get the request accepted

* Runs exist where no new leader is ever elected



Next topic:

Consensus protocol with group membership
+ |eader election at core

RAFT (assignment 3)

43



