Putting it all together for SMR:
Leader Election, RAFT

alllauc Ellal) deals

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 13

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.
RAFT slides heavily based on those from Diego Ongaro and John Ousterhout.

Goal: Replicated Log

CEEEERE

(Conse

oy

add

jmp

mov

4

J

.

4

Log\

B

add

jmp

mov

4

J

Con

nsus Consensus
achine Module achine o

.

nsus
ule

Log

S\ate

Madhine

@?@

add

jmp

mov, s

J

* Replicated log => replicated state machine

Clients

Servers

— All servers execute same commands in same order

« Consensus module ensures proper log replication

Raft Overview

1. Leader election

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes
4. Neutralizing old leaders

5. Client interactions

6. Reconfiguration

Server States

« At any given time, each server is either:

— Leader: handles all client interactions, log replication
— Follower: completely passive
— Candidate: used to elect a new leader

* Normal operation: 1 leader, N-1 followers

(Follower) (Candidate) (Leader)

Liveness Validation

« Servers start as followers

« Leaders send heartbeats (empty AppendEntries RPCs) to
maintain authority

« If electionTimeout elapses with no RPCs (100-500ms),
follower assumes leader has crashed and starts new election

timeout,
timeout, new election receive votes from

start start election m /mg;%)‘f servers
K(Follower) (Candldate> (Leader)
o .

“step
down”

discover server with
discover current leader higher term
or higher term

Terms (aka epochs)

Term 1 Term2 Term 3 Term 4 Term 5

v/]

Elections Split Vote Normal Operation

« Time divided into terms
— Election (either failed or resulted in 1 leader)
— Normal operation under a single leader

« Each server maintains current term value

« Key role of terms: identify obsolete information

Elections

- Start election:
— Increment current term, change to candidate state, vote for self

- Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:
« Become leader
- Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:

« Return to follower state

3. No-one wins election (election timeout elapses):

« |ncrement term, start new election

Elections

- Safety: allow at most one winner per term
— Each server votes only once per term (persists on disk)
— Two different candidates can’t get majorities in same term

B can't also f[-__]__-[__-_ji :r[““]“'[““]' --- I ---- I \i Voted for
get majority 1! i ! candidate A

Servers

« Liveness: some candidate must eventually win
— Each choose election timeouts randomly in [T, 2T]

— One usually initiates and wins election before others start
— Works well if T >> network RTT

Log Structure

term
L
command J

1 2 3 4) 6 4 8
1 1 1 2 3 3 3 3
add |cmp| ret [mov| jmp | div | shl | sub
1 1 1 2 3

add |cmp| ret |[mov| jmp

1 1 1 2 3 3 3 3
add |cmp| ret [mov| jmp | div | shl | sub
1 1

add |cmp

1 1 1 2 3 3 3

add [cmp| ret |[mov| jmp | div | shl

¢

« Log entry = <index, term, command >

log index

leader

~ followers

committed entries

- Log stored on stable storage (disk); survives crashes

- Entry committed if known to be stored on majority of servers

— Durable / stable, will eventually be executed by state machines

Normal operation

1w

J

nsus te \
ule Madhine

shl

(Consensus Consensus Con
Module achine Module achine o

ﬁgs :1 hogs j} Log

add mov add mov add mov| s

< jmp JAS jmp JAS jmp)

Sf—

» Client sends command to leader
» Leader appends command to its log
» Leader sends AppendEntries RPCs to followers

« Once new entry committed:
— Leader passes command to its state machine, sends result to client
— Leader piggybacks commitment to followers in later AppendEntries

— Followers pass committed commands to their state machines "

Normal operation

1w

(Consen
Modu

ay

sus Consensus Con
le achine Module achine

add | jmp mov

A

_

J

_

A

Log\

i

add

jmp

mov

shl

J

A

J

Sf—

oWlule

]

Log

ns:\ﬁe)

add

jmpmov| s

Madhine

 Crashed / slow followers?

— Leader retries RPCs until they succeed

« Performance is optimal in common case:

— One successful RPC to any majority of servers

1

Log Operation: Highly Coherent

1 2 3 4 5 6

1 1 1 1 2 3 3
server add |cmp| ret [mov| jmp | div

2 1 1 1 2 3 4
server add |cmp| ret |[mov| jmp | sub

 If log entries on different server have same index and term:
— Store the same command

— Logs are identical in all preceding entries

- If given entry is committed, all preceding also committed

Log Operation: Consistency Check

leader

follower

leader

follower

1 2 3 14" 5
1 1 1 21 3
add [cmp| ret |mov| jmp
1 1 1 2

add |cmp| ret |[mov

1 1 1 2 3
add [cmp| ret |mov| jmp
1 1 1 1

add |cmp]| ret | shl

AppendEntries succeeds:
matching entry

AppendEntries fails:
mismatch

* AppendEntries has <index,term> of entry preceding new ones

« Follower must contain matching entry; otherwise it rejects

* Implements an induction step, ensures coherency

13

Leader Changes

« New leader’s log is truth, no special steps, start normal operation
— Will eventually make follower’s logs identical to leader’s

— Old leader may have left entries partially replicated

« Multiple crashes can leave many extraneous log entries

log index 1 2 3 4 5 6 7

term/?w 115|6|6]|6

Safety Requirement

Once log entry applied to a state machine, no other state

machine must apply a different value for that log entry

« Raft safety property: Ifleader has decided log entry is
committed, entry will be present in logs of all future leaders

* Why does this guarantee higher-level goal?

1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed

3. Entries must be committed before applying to state machine
Committed — Present in future leaders’ logs

Restrictions on J K» Restrictions on
commitment leader election

15

Picking the Best Leader

, si| 1]1 2] 2 |: Committed?
Can'’t tell o —
which entries s,| 1|1 [1]2
T T-T-T51 Unavailable during

committed! (

leader transition

- Elect candidate most likely to contain all committed entries
— In RequestVote, candidates incl. index + term of last log entry

— Voter V denies vote if its log is “more complete™:
(newer term) or (entry in higher index of same term)

— Leader will have “most complete” log among electing majority

16

Committing Entry from Current Term

sq|1[1]2|2]|2|-— Leader forterm 2

sg| 111 2§ 2 i -—— AppendEntries just succeeded
sq T]1]2 g Can’t be elected as

leader for term 3
ss 1] 1

7

« Case #1: Leader decides entry in current term is committed

« Safe: leader for term 3 must contain entry 4

17

Committing Entry from Earlier Term

1 2 3 4 5
Sq 11 1 2\4
So 11112
F—Pi
S3 1 1! 2 i
sq| 1] 1
Ss 11113313

Leader for term 4

AppendEntries just succeeded

« Case #2: Leader trying to finish committing entry from earlier

« Entry 3 not safely committed:

— S can be elected as leader for term 5 (how?)
— If elected, it will overwrite entry 3 on s, s,, and s;

18

New Commitment Rules

Leader for term 4

« For leader to decide entry is committed:
1. Entry stored on a majority
2. =21 new entry from leader’s term also on majority

« Example; Once e4 committed, s5 cannot be elected leader
for term 5, and e3 and e4 both safe

Challenge: Log Inconsistencies

1 2 3 4 5 6 7 8 9 10 11 12

Leader for term 8 1111114 (4]5|5|6|6]|6
" Sa—— Y '
111111414]|5|5]|6] 6, I
SO S T L Bl B B 4 T Missing
oy [1T17] 4i i/ Entries

1

1[1[1]4]4a|5]5|6]6]6i]6]

Possible | (©) !
- el
followers 1= A1 [1]4]4]5]5]6 66} 7]7]
.]

- " - J

Leader changes can result in log inconsistencies

20

Repairing Follower Logs

nextindex

|
123456789|10:1I112

Leader for term 7 1]1111]4]|4|5]|5|6]|6 LQJ
- 2 VaYaYaYaYa'

@ |1]1]1]4
Followers - PAVaVaVavava¥al
by[1]1]1[2]2]2|3]|3|3]|3]3

« New leader must make follower logs consistent with its own
— Delete extraneous entries
— Fill in missing entries

- Leader keeps nextindex for each follower:
— Index of next log entry to send to that follower
— Initialized to (1 + leader’s last index)

- If AppendEntries consistency check fails, decrement nextlndex, try again

Repairing Follower Logs

nextindex
1 2 3 4 15 6 7 8 9 10 11 12
Leader for term 7 111111 4 A|1 515|6|6|6 ‘

|

@ | 1]1[1]4

RN
N
N
N
w
w
w
w
w

Before repair (f) | 1| 1

v

After repair (f) | 1 | 1

RN
AN

Neutralizing Old Leaders

Leader temporarily disconnected

— other servers elect new leader

— old leader reconnected
— old leader attempts to commit log entries

« Terms used to detect stale leaders (and candidates)
— Every RPC contains term of sender

— Sender’s term < receiver:
« Receiver: Rejects RPC (via ACK which sender processes...)

— Receiver's term < sender:
- Receiver reverts to follower, updates term, processes RPC

« Election updates terms of majority of servers
— Deposed server cannot commit new log entries

Client Protocol

Send commands to leader
— If leader unknown, contact any server, which redirects client to leader

- Leader only responds after command logged,
committed, and executed by leader

- If request times out (e.g., leader crashes):
— Client reissues command to new leader (after possible redirect)

- Ensure exactly-once semantics even with leader failures
— E.g., Leader can execute command then crash before responding
— Client should embed unique ID in each command
— This client ID included in log entry
— Before accepting request, leader checks log for entry with same id

Configuration Changes

- View configuration: {leader, { members }, settings }

« Consensus must support changes to configuration
— Replace failed machine
— Change degree of replication

« Cannot switch directly from one config to another:
conflicting majorities could arise

Cold ’/ Cnew \
Server 1

Server 2 Majority of Cqq
Server 3 P
Server 4 i Majority of Ccw

—

time 25

2-Phase Approach via Joint Consensus

« Joint consensus in intermediate phase: need majority of
both old and new configurations for elections, commitment

« Configuration change just a log entry; applied immediately
on receipt (committed or not)

« Once joint consensus is committed, begin replicating log
entry for final configuration

Coiq Can make Chew Can make
unilateral decisions unilateral decisions
> | >
Cnew ooooooo
C0|d+neW.......'_:
Cold e X X X q:
: : —>
CoId+new entry Cnew entry time

committed committed 26

2-Phase Approach via Joint Consensus

« Any server from either configuration can serve as leader

« If leader notin C,,,, must step down once C, ., committed

Coiq Can make Chew Can make

unilateral decisions>I . unilateral decisions
o
]

C XXX
new .

Cold+new""".: .'°°°°'§\|eadern0tincnew

Coid covcced steps down here
: : —>
CoId+new entry Cnew entry time

committed committed 27

Raft vs. Viewstamped Replication

« Strong leader
— Log entries flow only from leader to other servers

— Select leader from limited set so doesn’t need to “catch up”

 Leader election

— Randomized timers to initiate elections

* Membership changes
— New joint consensus approach with overlapping majorities
— Cluster can operate normally during configuration changes

28

Raft summary

* Designed for

* At most one leader per term
— Leader election randomized to avoid FLP scenarios
— Elect leader with most up-to-date log

* Logs operations use an inductive consistency check,
only accept an operation when previous log entry
term/index

* New leader repairs follower logs to match its own and
then can commit new commands

» Uses joint consensus for reconfiguration

