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Network partitions divide systems
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Network partitions divide systems



• Totally-ordered Multicast?

• Bayou?

• Viewstamped Replication?

• Chord?

• Paxos?

• Dynamo?

• RAFT?
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How can we handle partitions?



6

How about this set of partitions?



• Replicas appear to be a single machine, 
but lose availability during a network partition

OR

• All replicas remain available during a network 
partition but do not appear to be a single machine
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Fundamental trade-off?



• You cannot achieve all three of:
1. Consistency
2. Availability

3. Partition-Tolerance

• Partition Tolerance => Partitions Can Happen

• Availability => All Sides of Partition Continue

• Consistency => Replicas Act Like Single Machine
– Specifically, Linearizability
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CAP theorem preview
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• All replicas execute operations in some total order

• That total order preserves the real-time ordering 
between operations
– If operation A completes before operation B 

begins, then A is ordered before B in real-time

– If neither A nor B completes before the other 
begins, then there is no real-time order

• (But there must be some total order)

10

Linearizability [Herlihy and Wing 1990]



• Single machine processes requests one by one in 
the order it receives them
– Will receive requests ordered by real-time in that 

order

– Will receive all requests in some order

• Atomic Multicast, Viewstamped Replication, 
Paxos, and RAFT provide Linearizability
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Linearizability ==
“Appears to be a Single Machine”



• Hides the complexity of the underlying distributed 
system from applications!
– Easier to write applications
– Easier to write correct applications

• But, performance trade-offs, e.g., CAP
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Linearizability is ideal?
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• From keynote lecture by Eric Brewer (2000)
– History:  Eric started Inktomi, early Internet search site based 

around “commodity” clusters of computers

– Using CAP to justify “BASE” model:  Basically Available, Soft-
state services with Eventual consistency

• Popular interpretation: 2-out-of-3
– Consistency (Linearizability)

– Availability

– Partition Tolerance:  Arbitrary crash/network failures
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CAP conjecture [Brewer 00]



CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Client 1 Client 1
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CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

r(x)

x=0

Read begins after write 
completes

Read eventually returns (from A)

Not consistent (C) => contradiction! 



CAP interpretation 1/2

• Cannot “choose” no partitions
– 2-out-of-3 interpretation doesn’t make sense
– Instead, availability OR consistency?

• i.e., fundamental trade-off between availability and 
consistency
– When designing system must choose one or the 

other, both are not possible



CAP interpretation 2/2

• It is a theorem, with a proof, that you understand!

• Cannot “beat” CAP theorem

• Can engineer systems to make partitions 
extremely rare, however, and then just take the 
rare hit to availability (or consistency)



More trade-offs L vs. C

• Low-latency:  Speak to fewer than quorum of nodes?
– 2PC: write N, read 1

– RAFT:  write ⌊N/2⌋ + 1,  read ⌊N/2⌋ + 1

– General:  |W| + |R| > N

• L and C are fundamentally at odds
– “C” = linearizability, sequential, serializability (more later)
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PACELC
• If there is a partition (P):

– How does system tradeoff  A and C?

• Else (no partition)
– How does system tradeoff  L and C?

• Is there a useful system that switches?
– Dynamo:  PA/EL

– “ACID” dbs:  PC/EC

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
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http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
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Consistency models

• Contract between a distributed system and the 
applications that run on it

• A consistency model is a set of guarantees made 
by the distributed system

• e.g., Linearizability
– Guarantees a total order of operations
– Guarantees the real-time ordering is respected



Stronger vs weaker consistency
• Stronger consistency models

+ Easier to write applications
- More guarantees for the system to ensure

Results in performance tradeoffs

• Weaker consistency models
- Harder to write applications

+ Fewer guarantees for the system to ensure



Consistency hierarchy

Linearizability (Strong/Strict Consistency)

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo



Strictly stronger consistency
• A consistency model A is strictly stronger than B if 

it allows a strict subset of the behaviors of B
– Guarantees are strictly stronger

• Linearizability is strictly stronger than Sequential 
Consistency
– Linearizability: ∃total order + real-time ordering
– Sequential: ∃total order + process ordering

• Process ordering ⊆ Real-time ordering



• Consistency model defines what values reads are 
admissible
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Intuitive example

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=?

r(x)=?

r(x)=?

r(x)=?



• Consistency model defines what values reads are 
admissible
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Intuitive example

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=?

r(x)=?

Time when 
process issues 

operation

Time when 
process receives 

response

r(x)=?

r(x)=?



• Any execution is the same as if all read/write ops were executed in order of 
wall-clock time at which they were issued

• Therefore:
– Reads are never stale
– All replicas enforce wall-clock ordering for all writes
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Linearizability

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=?

r(x)=?

r(x)=?

r(x)=?



• Any execution is the same as if all read/write ops were executed in order of 
wall-clock time at which they were issued

• Therefore:
– Reads are never stale
– All replicas enforce wall-clock ordering for all writes
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Linearizability: YES

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=b

r(x)=b

r(x)=b

r(x)=b



• Any execution is the same as if all read/write ops were executed in order of 
wall-clock time at which they were issued

• Therefore:
– Reads are never stale
– All replicas enforce wall-clock ordering for all writes
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Linearizability: NO

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=a

r(x)=b

r(x)=b

r(x)=b



• Sequential = Linearizability – real-time ordering
1. All servers execute all ops in some identical sequential order 

2. Global ordering preserves each client’s own local ordering 

Sequential consistency

• With concurrent ops, “reordering” of ops (w.r.t. real-time ordering) 
acceptable, but all servers must see same order

– e.g., linearizability cares about time
sequential consistency cares about program order



• Any execution is the same as if all read/write ops were executed in some global 
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas
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Sequential consistency

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=?

r(x)=?

r(x)=?

r(x)=?



• Any execution is the same as if all read/write ops were executed in some global 
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas
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Sequential consistency: YES

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=b

r(x)=b

r(x)=b

r(x)=b

Also valid with linearizability



• Any execution is the same as if all read/write ops were executed in some global 
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas
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Sequential consistency: YES

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=a

r(x)=b

r(x)=b

r(x)=b

Not valid with linearizability



• Any execution is the same as if all read/write ops were executed in some global 
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas
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Sequential consistency: NO

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=b

r(x)=a

r(x)=a

r(x)=b

No global ordering can explain these results



• Any execution is the same as if all read/write ops were executed in some global 
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas
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Sequential consistency: NO

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=c

r(x)=a

r(x)=a

r(x)=b

No sequential global ordering can explain these results…
E.g.: w(x=c), r(x)=c, r(x)=a, w(x=b) doesn’t preserve P1’s ordering

w(x=c)



Causal+ Consistency
• Partially orders all operations, does not totally order them

– Does not look like a single machine

• Guarantees
– For each process, ∃ an order of all writes + that process’s reads

– Order respects the happens-before (à) ordering of operations

– + replicas converge to the same state
• Skip details, makes it stronger than eventual consistency



Causal+ But Not Sequential
w(x=1)

w(y=1) r(x)=0

r(y)=0PA

PB

w(x=1)

w(y=1)

r(y)=0

r(x)=0

PA Order: w(x=1), r(y=0), w(y=1)

Happens 
Before 
Order

Process
Ordering

w(x=1)

w(y=1)

r(y)=0

r(x)=0

No Total 
Order

w(x=1)

w(y=1)

r(y)=0

r(x)=0

√ Casual+ X Sequential

PB Order: w(y=1), r(x=0), w(x=1)



Eventual But Not Causal+
w(x=1)

r(y)=1 r(x)=0

w(y=1)PA

PB

As long as PB 
eventually would see 

r(x)=1 this is fine

Happens 
Before

Ordering

w(x=1)

r(y)=1

w(y)=1

r(x)=0

No Order 
for PB

w(x=1)

r(y)=1

w(y)=1

r(x)=0

√ Eventual X Causal+


