
Strong Consistency & CAP Theorem

CS 240: Computing Systems and Concurrency
Lecture 15

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

1. Network Partitions

2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

2

Outline

3

Network partitions divide systems

4

Network partitions divide systems

• Totally-ordered Multicast?

• Bayou?

• Viewstamped Replication?

• Chord?

• Paxos?

• Dynamo?

• RAFT?

5

How can we handle partitions?

6

How about this set of partitions?

• Replicas appear to be a single machine,
but lose availability during a network partition

OR

• All replicas remain available during a network
partition but do not appear to be a single machine

7

Fundamental trade-off?

• You cannot achieve all three of:
1. Consistency
2. Availability

3. Partition-Tolerance

• Partition Tolerance => Partitions Can Happen

• Availability => All Sides of Partition Continue

• Consistency => Replicas Act Like Single Machine
– Specifically, Linearizability

8

CAP theorem preview

1. Network Partitions

2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

9

Outline

• All replicas execute operations in some total order

• That total order preserves the real-time ordering
between operations
– If operation A completes before operation B

begins, then A is ordered before B in real-time

– If neither A nor B completes before the other
begins, then there is no real-time order

• (But there must be some total order)

10

Linearizability [Herlihy and Wing 1990]

• Single machine processes requests one by one in
the order it receives them
– Will receive requests ordered by real-time in that

order

– Will receive all requests in some order

• Atomic Multicast, Viewstamped Replication,
Paxos, and RAFT provide Linearizability

11

Linearizability ==
“Appears to be a Single Machine”

• Hides the complexity of the underlying distributed
system from applications!
– Easier to write applications
– Easier to write correct applications

• But, performance trade-offs, e.g., CAP

12

Linearizability is ideal?

1. Network Partitions

2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

13

Outline

• From keynote lecture by Eric Brewer (2000)
– History: Eric started Inktomi, early Internet search site based

around “commodity” clusters of computers

– Using CAP to justify “BASE” model: Basically Available, Soft-
state services with Eventual consistency

• Popular interpretation: 2-out-of-3
– Consistency (Linearizability)

– Availability

– Partition Tolerance: Arbitrary crash/network failures

14

CAP conjecture [Brewer 00]

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Client 1 Client 1

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Client 1 Client 1

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

r(x)

x=0

Read begins after write
completes

Read eventually returns (from A)

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

r(x)

x=0

Read begins after write
completes

Read eventually returns (from A)

Not consistent (C) => contradiction!

CAP interpretation 1/2

• Cannot “choose” no partitions
– 2-out-of-3 interpretation doesn’t make sense
– Instead, availability OR consistency?

• i.e., fundamental trade-off between availability and
consistency
– When designing system must choose one or the

other, both are not possible

CAP interpretation 2/2

• It is a theorem, with a proof, that you understand!

• Cannot “beat” CAP theorem

• Can engineer systems to make partitions
extremely rare, however, and then just take the
rare hit to availability (or consistency)

More trade-offs L vs. C

• Low-latency: Speak to fewer than quorum of nodes?
– 2PC: write N, read 1

– RAFT: write ⌊N/2⌋ + 1, read ⌊N/2⌋ + 1

– General: |W| + |R| > N

• L and C are fundamentally at odds
– “C” = linearizability, sequential, serializability (more later)

22

PACELC
• If there is a partition (P):

– How does system tradeoff A and C?

• Else (no partition)
– How does system tradeoff L and C?

• Is there a useful system that switches?
– Dynamo: PA/EL

– “ACID” dbs: PC/EC

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
23

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

1. Network Partitions

2. Linearizability

3. CAP Theorem

4. Consistency Hierarchy

24

Outline

Consistency models

• Contract between a distributed system and the
applications that run on it

• A consistency model is a set of guarantees made
by the distributed system

• e.g., Linearizability
– Guarantees a total order of operations
– Guarantees the real-time ordering is respected

Stronger vs weaker consistency
• Stronger consistency models

+ Easier to write applications
- More guarantees for the system to ensure

Results in performance tradeoffs

• Weaker consistency models
- Harder to write applications

+ Fewer guarantees for the system to ensure

Consistency hierarchy

Linearizability (Strong/Strict Consistency)

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Strictly stronger consistency
• A consistency model A is strictly stronger than B if

it allows a strict subset of the behaviors of B
– Guarantees are strictly stronger

• Linearizability is strictly stronger than Sequential
Consistency
– Linearizability: ∃total order + real-time ordering
– Sequential: ∃total order + process ordering

• Process ordering ⊆ Real-time ordering

• Consistency model defines what values reads are
admissible

29

Intuitive example

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=?

r(x)=?

r(x)=?

r(x)=?

• Consistency model defines what values reads are
admissible

30

Intuitive example

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=?

r(x)=?

Time when
process issues

operation

Time when
process receives

response

r(x)=?

r(x)=?

• Any execution is the same as if all read/write ops were executed in order of
wall-clock time at which they were issued

• Therefore:
– Reads are never stale
– All replicas enforce wall-clock ordering for all writes

31

Linearizability

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=?

r(x)=?

r(x)=?

r(x)=?

• Any execution is the same as if all read/write ops were executed in order of
wall-clock time at which they were issued

• Therefore:
– Reads are never stale
– All replicas enforce wall-clock ordering for all writes

32

Linearizability: YES

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=b

r(x)=b

r(x)=b

r(x)=b

• Any execution is the same as if all read/write ops were executed in order of
wall-clock time at which they were issued

• Therefore:
– Reads are never stale
– All replicas enforce wall-clock ordering for all writes

33

Linearizability: NO

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=a

r(x)=b

r(x)=b

r(x)=b

• Sequential = Linearizability – real-time ordering
1. All servers execute all ops in some identical sequential order

2. Global ordering preserves each client’s own local ordering

Sequential consistency

• With concurrent ops, “reordering” of ops (w.r.t. real-time ordering)
acceptable, but all servers must see same order

– e.g., linearizability cares about time
sequential consistency cares about program order

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas

35

Sequential consistency

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=?

r(x)=?

r(x)=?

r(x)=?

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas

36

Sequential consistency: YES

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=b

r(x)=b

r(x)=b

r(x)=b

Also valid with linearizability

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas

37

Sequential consistency: YES

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=a

r(x)=b

r(x)=b

r(x)=b

Not valid with linearizability

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas

38

Sequential consistency: NO

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=b

r(x)=a

r(x)=a

r(x)=b

No global ordering can explain these results

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:
– Reads may be stale in terms of real time, but not in logical time
– Writes are totally ordered according to logical time across all replicas

39

Sequential consistency: NO

wall-clock time

P1:

P2:

P3:

P4:

w(x=a)

w(x=b)

r(x)=c

r(x)=a

r(x)=a

r(x)=b

No sequential global ordering can explain these results…
E.g.: w(x=c), r(x)=c, r(x)=a, w(x=b) doesn’t preserve P1’s ordering

w(x=c)

Causal+ Consistency
• Partially orders all operations, does not totally order them

– Does not look like a single machine

• Guarantees
– For each process, ∃ an order of all writes + that process’s reads

– Order respects the happens-before (à) ordering of operations

– + replicas converge to the same state
• Skip details, makes it stronger than eventual consistency

Causal+ But Not Sequential
w(x=1)

w(y=1) r(x)=0

r(y)=0PA

PB

w(x=1)

w(y=1)

r(y)=0

r(x)=0

PA Order: w(x=1), r(y=0), w(y=1)

Happens
Before
Order

Process
Ordering

w(x=1)

w(y=1)

r(y)=0

r(x)=0

No Total
Order

w(x=1)

w(y=1)

r(y)=0

r(x)=0

√ Casual+ X Sequential

PB Order: w(y=1), r(x=0), w(x=1)

Eventual But Not Causal+
w(x=1)

r(y)=1 r(x)=0

w(y=1)PA

PB

As long as PB
eventually would see

r(x)=1 this is fine

Happens
Before

Ordering

w(x=1)

r(y)=1

w(y)=1

r(x)=0

No Order
for PB

w(x=1)

r(y)=1

w(y)=1

r(x)=0

√ Eventual X Causal+

