
Concurrency Control

CS 240: Computing Systems and Concurrency
Lecture 17

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Contents adapted from Wyatt Lloyd.

Let’s Scale Strong Consistency!
1. Transactions and Atomic Commit review

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)

2

• Definition: A unit of work:
– May consist of multiple data accesses or updates
– Must commit or abort as a single atomic unit

• Transactions can either commit, or abort
– When commit, all updates performed on data are

made permanent, visible to other transactions

– When abort, data restored to a state such that the
aborting transaction never executed

3

The transaction

Transaction examples
• Bank account transfer

– A -= $100
– B += $100

• Maintaining symmetric relationships
– A FriendOf B
– B FriendOf A

4

5

Defining properties of transactions
• Atomicity: Either all constituent operations of the

transaction complete successfully, or none do

• Consistency: Each transaction in isolation preserves
a set of integrity constraints on the data

• Isolation: Transactions’ behavior not impacted by
presence of other concurrent transactions

• Durability: The transaction’s effects survive failure
of volatile (memory) or non-volatile (disk) storage

Atomic Commit
• Atomic: All or nothing

• Either all participants do something (commit) or no
participant does anything (abort)

• Common use: commit a transaction that updates data
on different shards

6

Relationship with replication
• Replication (e.g., RAFT) is about doing the same thing

multiple places to provide fault tolerance

• Sharding is about doing different things multiple places
for scalability

• Atomic commit is about doing different things in
different places together

7

Relationship with replication

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

8

Focus on sharding for today

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

9

Atomic Commit
• Atomic: All or nothing

• Either all participants do something (commit) or no
participant does anything (abort)

• Atomic commit is accomplished with the
Two-phase commit protocol (2PC)

10

Let’s Scale Strong Consistency!
1. Transactions and Atomic Commit review

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)

11

12

Two concurrent transactions

transaction sum(A, B):
begin_tx
a ß read(A)
b ß read(B)
print a + b
commit_tx

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

• Isolation: sum appears to happen either
completely before or completely after transfer
– i.e., it appears that all operations of a transaction

happened together
– sometimes called before-after atomicity

• Schedule for transactions is an ordering of the
operations performed by those transactions

13

Isolation between transactions

• Serial execution of transactions—transfer then sum:

transfer: rA wA rB wB ©
sum: rA rB ©

• Concurrent execution resulting in inconsistent
retrieval, result differing from any serial execution:

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

14

Problem for concurrent execution:
Inconsistent retrieval

debit credit

debit credit

• Isolation: sum appears to happen either
completely before or completely after transfer
– i.e., it appears that all operations of a transaction

happened together
– sometimes called before-after atomicity

• Given a schedule of operations:
– Is that schedule in some way “equivalent” to a

serial execution of transactions?

15

Isolation between transactions

• Two operations from different transactions are
conflicting if:

1. They read and write to the same data item
2. The write and write to the same data item

• Two schedules are equivalent if:
1. They contain the same transactions and operations
2. They order all conflicting operations of non-aborting

transactions in the same way

16

Equivalence of schedules

• Ideal isolation semantics: serializability

• A schedule is serializable if it is equivalent to some
serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

17

Serializability

• Ideal isolation semantics: serializability

• A schedule is serializable if it is equivalent to some
serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

18

A serializable schedule

Conflict-free!
Serial schedule

rA

• Ideal isolation semantics: serializability

• A schedule is serializable if it is equivalent to some
serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

19

A non-serializable schedule

Conflicting opsConflicting ops

But in a serial schedule, sum’s reads
either both before wA or both after wB

• Linearizability: a guarantee
about single operations on
single objects
– Once write completes, all

later reads (by wall clock)
should reflect that write

• Serializability is a
guarantee about
transactions over
one or more objects
– Doesn’t impose

real-time constraints

20

Serializability versus linearizability

• Strict serializability = Serializability + real-time ordering
– Intuitively Serializability + Linearizability
– Transaction behavior equivalent to some serial execution

• And that serial execution agrees with real-time

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Strict Serializability e.g., Spanner

21

• Each node t in the precedence graph represents a
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

22

Testing for serializability

• Each node t in the precedence graph represents a
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

23

Serializable schedule, acyclic graph

transfer sum

Serializable

• Each node t in the precedence graph represents a
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

24

Non-serializable schedule, cyclic graph

transfer sum

Non-serializable

• Each node t in the precedence graph represents a
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

25

Testing for serializability

In general, a schedule is serializable if and only
if its precedence graph is acyclic

Let’s Scale Strong Consistency!
1. Transactions and Atomic Commit review

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)

26

Concurrency Control
• Concurrent execution can violate serializability

• We need to control that concurrent execution so we
do things a single machine executing transactions one
at a time would
– Concurrency control

27

• Big Global Lock
– Acquire the lock when transaction starts
– Release the lock when transaction ends

• Provides strict serializability
– Just like executing transaction one by one because

we are doing exactly that

• No concurrency at all
– Terrible for performance: one transaction at a time

28

Concurrency Control Strawman #1

• Locks maintained on each shard
– Transaction requests lock for a data item
– Shard grants or denies lock

• Lock types
– Shared: Need to have before read object
– Exclusive: Need to have before write object

29

Locking

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No

• Grab locks independently, for each data item (e.g.,
bank accounts A and B)

transfer: ◢A rA wA ◣A ◢B rB wB ◣B ©
sum: ◿A rA◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = eXclusive- / Shared-lock; ◣ / ◺ = X- / S-unlock
30

Concurrency Control Strawman #2

Permits this non-serializable interleaving

• 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

– Growing phase when transaction acquires locks
– Shrinking phase when transaction releases locks

• In practice:
– Growing phase is the entire transaction
– Shrinking phase is during commit

31

Two-phase locking (2PL)

• 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

transfer: ◢A rA wA ◣A ◢B rB wB ◣B ©
sum: ◿A rA◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock
32

2PL provides strict serializability

2PL precludes this non-serializable interleaving

• 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

transfer: ◿A rA ◢A wA◿B rB ◢B wB✻©
sum: ◿A rA ◿B rB✻©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock; ✻ = release all locks

33

2PL and transaction concurrency

2PL permits this serializable, interleaved schedule

• 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

(locking not shown)

34

2PL doesn’t exploit all opportunities
for concurrency

2PL precludes this serializable, interleaved schedule

• What do we do if a lock is unavailable?
– Give up immediately?
– Wait forever?

• Waiting for a lock can result in deadlock
– Transfer has A locked, waiting on B
– Sum has B locked, waiting on A

• Many ways to detect and deal with deadlocks
– e.g., centrally detect deadlock cycles and abort

involved transactions

35

Issues with 2PL

Lets Scale Strong Consistency!
1. Atomic Commit

– Two-phase commit (2PC)

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)

36

• Acquire locks to prevent all possible violations of
serializability

• But leaves a lot of concurrency on the table that
is okay and available

37

2PL is pessimistic

• Goal: Low overhead for non-conflicting txns
• Assume success!

– Process transaction as if it would succeed
– Check for serializability only at commit time
– If fails, abort transaction

• Optimistic Concurrency Control (OCC)
– Higher performance when few conflicts vs.

locking
– Lower performance when many conflicts vs.

locking

38

Be optimistic!

• From Rococo paper in OSDI 2014. Focus on 2PL vs. OCC.
• Observe OCC better when write rate lower (fewer conflicts),

worse than 2PL with write rate higher (more conflicts)

39

2PL vs OCC

Conflict Rate

• Optimistic Execution:
– Execute reads against shards
– Buffer writes locally

• Validation and Commit:
– Validate that data is still the same as previously

observed
• (i.e., reading now would give the same result)

– Commit the transaction by applying all buffered
writes

– Need this to all happen together, how?

40

Optimistic Concurrency Control

• Client sends each shard a prepare
– Prepare includes read values and buffered writes for each shard
– Each shard acquires shared locks on read locations

and exclusive locks on write locks
– Each shard checks if read values validate
– Each shard sends vote to client

• If all locks acquired and reads validate => Vote Yes
• Otherwise => Vote No

• Client collects all votes, if all yes then commit
– Client sends commit/abort to all shards
– If commit: shards apply buffered writes
– Shards release all locks 41

Validation and Commit use 2PC

