Concurrency Control

alllauc Ellal) deals

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 17

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.
Contents adapted from Wyatt Lloyd.

Let’s Scale Strong Consistency!

1. Transactions and Atomic Commit review

2. Serializability
— Strict serializability

3. Concurrency Control:
— Two-phase locking (2PL)
— Optimistic concurrency control (OCC)

The transaction

Definition: A unit of work:
— May consist of multiple data accesses or updates
— Must commit or abort as a single atomic unit

Transactions can either commit, or abort

— When commit, all updates performed on data are
made permanent, visible to other transactions

— When abort, data restored to a state such that the
aborting transaction never executed

Transaction examples

 Bank account transfer
—A-=%100
— B +=%100

* Maintaining symmetric relationships
— AFriendOf B
— B FriendOf A

Defining properties of transactions

- Atomicity: Either all constituent operations of the
transaction complete successfully, or none do

« Consistency: Each transaction in isolation preserves
a set of integrity constraints on the data

- Isolation: Transactions’ behavior not impacted by
presence of other concurrent transactions

- Durability: The transaction’s effects survive failure
of volatile (memory) or non-volatile (disk) storage

Atomic Commit

* Atomic: All or nothing

« Either all participants do something (commit) or no
participant does anything (abort)

« Common use: commit a transaction that updates data
on different shards

Relationship with replication

Replication (e.g., RAFT) is about doing the thing
multiple places to provide fault tolerance

Sharding is about doing different things multiple places
for scalability

* Atomic commit is about doing things in
different places together

Sharding
Dimension

e
L
. M-R

sl
L
. M-R

Relationship with replication
ReEIication Dimension |

P
i
. M-R

Focus on sharding for today

Reelication Dimension |

<>r <O
D'c?hardir_lg 4 @ @
imension - E

r >

Atomic Commit

* Atomic: All or nothing

« Either all participants do something (commit) or no
participant does anything (abort)

« Atomic commit is accomplished with the
Two-phase commit protocol (2PC)

Let’s Scale Strong Consistency!

1. Transactions and Atomic Commit review

2. Serializability
— Strict serializability

3. Concurrency Control:
— Two-phase locking (2PL)
— Optimistic concurrency control (OCC)

Two concurrent transactions

transaction transfer(A, B):

begin tx
a < read(A)

transaction sum(A, B): ':.:: 0 ﬁ?r?t';(i\’,";’fqté)
begin_tx b < read(B)
a € read(A) comm o6
b & read(B) —F
printa+Db
commit_tx

Isolation between transactions

sum appears to happen either
completely before or completely after transfer

—i.e., it appears that all operations of a transaction
happened together

— sometimes called before-after atomicity

Schedule for transactions is an ordering of the
operations performed by those transactions

Problem for concurrent execution:
Inconsistent retrieval

« Serial execution of transactions—transfer then sum:
| debit | credit

transfer: r, wy rg wg ©

sum: rp, rg ©

* Concurrent execution resulting in inconsistent
retrieval, result differing from any serial execution:

| debit | credit
transfer: r, wy g wg ©
sum: rp, rg ©

Time =2
© = commit

14

Isolation between transactions

* Isolation: sum appears to happen either
completely before or completely after transfer

—i.e., it appears that all operations of a transaction
happened together

— sometimes called before-after atomicity

* Given a schedule of operations:

— Is that schedule in some way “equivalent” to a
serial execution of transactions?

15

Equivalence of schedules

* Two operations from different transactions are
conflicting if:

1. They read and write to the same data item
2. The write and write to the same data item

* Two schedules are equivalent if:
1. They contain the same transactions and operations

2. They order all conflicting operations of non-aborting
transactions in the same way

16

Serializability

|deal isolation semantics: serializability

A schedule is serializable if it is equivalent to some
serial schedule

— I.e., non-conflicting operations can be reordered
to get a serial schedule

17

A serializable schedule

 |deal isolation semantics: serializability

* Aschedule is serializable if it is equivalent to some
serial schedule

— I.e., non-conflicting operations can be reordered
to get a serial schedule

transfer: r, w, g wg ©
sum: >rA g ©
73 I A
' Serial schedule ! Time >

Conflict-free! © = commiit

18

A non-=serializable schedule

 |deal isolation semantics: serializability

* Aschedule is serializable if it is equivalent to some
serial schedule

— I.e., non-conflicting operations can be reordered
to get a serial schedule

transfer: r, w, g wg ©
sum: t rp, rg © T
I S Y Y N N
. . y |
But in a serial schedule, sum’s reads 1 Time =

either both before w, or both after w- i & — -
---------- wn-rnerrrryv-éunn-rng-apa------g-' © = commit

19

Serializability versus linearizability

 Linearizability: a guarantee * Serializability is a

about single operations on guarantee about
single objects transactions over
— Once write completes, all one or more objects
later reads (by wall clock) — Doesn’t impose
should reflect that write real-time constraints

- Strict serializability = Serializability + real-time ordering
— Intuitively Serializability + Linearizability
— Transaction behavior equivalent to some serial execution
* And that serial execution agrees with real-time

20

Consistency Hierarchy

Strict Serializability e.g., Spanner
Linearizability e.g., RAFT

'

Sequential Consistency

1

Causal+ Consistency e.g., Bayou

i

Eventual Consistency e.g., Dynamo

Testing for serializability

Each node tin the precedence graph represents a
transaction t

— Edge from s to tif some action of s precedes and
conflicts with some action of ¢t

22

Serializable schedule, acyclic graph

« Each node tin the precedence graph represents a
transaction ¢

— Edge from s to tif some action of s precedes and
conflicts with some action of ¢t

transfer: r, w, g wg ©
sum: N, T~y ©

' Serializable | Time >

Ctran --------------------- © = commit

23

Non-serializable schedule, cyclic graph

« Each node tin the precedence graph represents a
transaction ¢

— Edge from s to tif some action of s precedes and
conflicts with some action of ¢t

transfer: r, w, _@/EaWB ©
sum: N, Iy

24

Testing for serializability

« Each node tin the precedence graph represents a
transaction t

— Edge from s to tif some action of s precedes and
conflicts with some action of ¢t

In general, a schedule is serializable if and only
iIf its precedence graph is acyclic

25

Let’s Scale Strong Consistency!

1. Transactions and Atomic Commit review

2. Serializability
— Strict serializability

3. Concurrency Control:
— Two-phase locking (2PL)
— Optimistic concurrency control (OCC)

Concurrency Control

« Concurrent execution can violate serializability

e We n_eed to _ that concurrent execution so we
do th_mgs a smdgle machine executing transactions one
at a time woul

Concurrency Control Strawman #1

* Big Global Lock
— Acquire the lock when transaction starts
— Release the lock when transaction ends

* Provides strict serializability

— Just like executing transaction one by one because
we are doing exactly that

* No concurrency at all
— Terrible for performance: one transaction at a time

Locking

Locks maintained on each shard
— Transaction requests lock for a data item
— Shard grants or denies lock

Lock types
— Shared: Need to have before read object
— Exclusive: Need to have before write object

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No

29

Concurrency Control Strawman #2

« Grab locks independently, for each data item (e.g.,
bank accounts A and B)

e

transfer: 4, r, wyay
sum: Apfa N p Aglg Ng©

Time =2
© = commit
4 [4 = eXclusive-/ Shared-lock; » / N = X-/ S-unlock

Two-phase locking (2PL)

 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

— Growing phase when transaction acquires locks
— Shrinking phase when transaction releases locks

 |n practice:
— Growing phase is the entire transaction
— Shrinking phase is during commit

31

2PL provides strict serializability

 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

transfer: 4, r, wyh, @ g Wg hg ©
sum: ApTA l:@ABrB Ng©

Time =2
© = commit
4/ 4 =X-]S-lock:x/ N =X-/S-unlock

32

2PL and transaction concurrency

 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

transfer: ApTp 4\\W, Aglg 45 W5 KO
sum: ApTA Ag g ©

| 2PL permits this serializable, interleaved schedule |

Time =2
© = commit
4/4=X-S-lock;x /N =X-/S-unlock; * =release all locks

33

2PL doesn’t exploit all opportunities
for concurrency

 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

transfer: r, w, g wg ©
sum: A g ©

Time 2
© = commit
(locking not shown)

34

Issues with 2PL

 What do we do if a lock is unavailable?
— Give up immediately?
— Wait forever?

« Waiting for a lock can result in deadlock
— Transfer has A locked, waiting on B
— Sum has B locked, waiting on A

* Many ways to detect and deal with deadlocks

— e.g., centrally detect deadlock cycles and abort
involved transactions

35

Lets Scale Strong Consistency!

1. Atomic Commit
— Two-phase commit (2PC)

2. Serializability
— Strict serializability

3. Concurrency Control:
— Two-phase locking (2PL)
— Optimistic concurrency control (OCC)

2PL is pessimistic

* Acquire locks to prevent all possible violations of
serializability

« But leaves a lot of concurrency on the table that
Is okay and available

37

Be optimistic!

* Goal: Low overhead for non-conflicting txns
* Assume success!

— Process transaction as if it would succeed
— Check for serializability only at commit time

If fails, abort transaction

* Optimistic Concurrency Control (OCC)

Higher performance when few conflicts vs.
ocking

_ower performance when many conflicts vs.
ocking

2PL vs OCC

70000 S N
6000/ 3. |

5000/ §
4000|}

| > . Rococo
@ @® 2PL
1V=¥ OCC

(new-order/s)

Conflict Rate

« From Rococo paper in OSDI 2014. Focus on 2PL vs. OCC.

« QObserve OCC better when write rate lower (fewer conflicts),
worse than 2PL with write rate higher (more conflicts)

Optimistic Concurrency Control

« Optimistic Execution:
— Execute reads against shards
— Buffer writes locally

* Validation and Commit;

— Validate that data is still the same as previously
observed

* (.e., reading now would give the same result)

— Commit the transaction by applying all buffered
writes

— Need this to all happen together, how?

Validation and Commit use 2PC

* Client sends each shard a prepare
— Prepare includes read values and buffered writes for each shard

— Each shard acquires shared locks on read locations
and exclusive locks on write locks

— Each shard checks if read values validate

— Each shard sends vote to client
* |f all locks acquired and reads validate => Vote Yes
« Otherwise => Vote No

 Client collects all votes, if all yes then commit
— Client sends commit/abort to all shards
— If commit: shards apply buffered writes
— Shards release all locks

