Distributed Transactions in Spanner

alllauc Ellal) deals

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 18

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.
Contents adapted from Wyatt Lloyd.



Why Google built Spanner

2005 — BigTable [osbi2006]
— Eventually consistent across datacenters
— Lesson: “don’t need distributed transactions”

20087 — MegaStore [cipr 2011]
— Strongly consistent across datacenters

— Option for distributed transactions
« Performance was not great...

2011 — Spanner [osbi2012]
— Strictly Serializable Distributed Transactions

— “We wanted to make it easy for developers to build their
applications”



Spanner: Google’s Globally-
Distributed Database

OSDI 2012



Google’s Setting

Dozens of zones (datacenters)
Per zone, 100-1000s of servers

Per server, 100-1000 partitions (tablets)

Every tablet replicated for fault-tolerance (e.g., 5x)



Scale-out vs. fault tolerance

0o >
% >,

P >
Pp >,

« Every tablet replicated via Paxos (with leader election)

« S0 every “operation” within transactions across tablets
actually is a replicated operation within Paxos RSM

« Paxos groups can stretch across datacenters!



Read-Only Transactions

Transactions that only read data

— Predeclared, i.e., developer uses READ ONLY
flag / interface

Reads are dominant operations
—e.g., FB's TAO had : 1 write [arc 2013

—e.g., Google Ads (F1) on Spanner from 17 DC:
21.55 reads in 24h
31.2M single-shard transactions in 24h
32.1M multi-shard transactions in 24h



Make Read-Only Txns Efficient

 |deal: Read-only transactions that are non-
blocking

— Arrive at shard, read data, send data back
— Impossible with Strict Serializability

* Goal 1: Lock-free read-only transactions

» Goal 2: Non-blocking stale read-only txns



Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?



TrueTime

+ “Global wall-clock time” with bounded uncertainty
IS worst-case clock divergence
— Timestamps become intervals, not single values

TT.now()

>time

earl-iest Iat-est

Consider event e,,,, which invoked tt = TT.now():
Guarantee: tt.earliest <=t .(e,,,) <= tt.latest



TrueTime for Read-Only Txns

 Assign all transactions a wall-clock commit time (s)

— All replicas of all shards track how up-to-date they are with t,
* i.e., all transactions with s < t_. have committed on this machine

« Goal 1: Lock-free read-only transactions

— Current time < TT.now.latest()
— S;eaq = 1 I.NOW.latest()

— wait until s,..q < tegre

— Read data as of s 4

« Goal 2: Non-blocking stale read-only txns

— Similar to above, except explicitly choose time in the past
— (Trades away consistency for better perf, e.g., lower latency)



Timestamps and TrueTime

Acquired locks Release locks

o —

11



Commit Wait

« Enables efficient read-only transactions
« Cost: 2¢ extra latency

« Reduce/eliminate by overlapping with:
— Replication

— Two-phase commit



Commit Wait and Replication

Start Achieve Notify

i consensus consensus followers

Acquired locks Release|locks

- -
__

Sufficient for single-shard transactions!

13



Client-driven transactions
for multi-shard transactions

Client: 2PL w/ 2PC

1. Issues reads to leader of each shard group,
which acquires read locks and returns most recent data

2. Locally performs writes

3. Chooses coordinator from set of leaders, initiates commit

4. Sends commit message to each leader,
include identity of coordinator and buffered writes

5. Waits for commit from coordinator



Commit Wait and 2-Phase Commit

*  On commit msg from client, leaders acquire local write locks

— If non-coordinator:
« Choose prepare ts > previous local timestamps
* Log prepare record through Paxos
* Notify coordinator of prepare timestamp

— If coordinator:
« Wait until hear from other participants
« Choose commit timestamp >= prepare ts, > local ts
* Logs commit record through Paxos
« Wait commit-wait period
« Sends commit timestamp to replicas, other leaders, client

* All apply at commit timestamp and release locks



Commit Wait and 2-Phase Commit

Acquired locks

— :

Acquired locks

|
- :

Acquired locks

y
- :

1. Client issues reads to leader of each shard group,
which acquires read locks and returns most recent data

16



Commit Wait and 2-Phase Commit

Start logging Done logging

Acquired locks
= :
Acquired locks / /
i To, I Y v v |

I
Acquired locks /
\4 A4

- '
P2 | Prepared |

2. Locally performs writes

3. Chooses coordinator from set of leaders, initiates commit
4. Sends commit msg to each leader, incl. identity of coordinator

17



Commit Wait and 2-Phase Commit

Start logging Done logging

Acquired locks

Release locks

o

—

Acquired locks

|Committed
/ / \Release locks
v ‘1’ |

|
-

Acquired locks

I
/ \Release locks
\ A ‘1' |

|
4

Prepared |

18



Example

Remove X

from friend list Risky post P

Remove myself
from X’s friend list

Time <8 8 15
T My friends X] I
] My posts [P]
B8 X’s friends [me] []

19



Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?



TrueTime Architecture

GPS GPS GPS
timemaster timemaster timemaster
GPS Atomic-clock GPS
timemaster timemaster timemaster

Client
Datacenter 1 Datacenter 2 Datacenter n

Compute reference [earliest, latest] = now

I+



TrueTime implementation

NOoOwW

+6ms

reference now + local-clock offset
reference ¢ + worst-case local-clock drift

1ms + 200 ps/sec

&
A

> time

Osec 30sec 60sec 90sec

« What about faulty clocks?
— Bad CPUs 6x more likely in 1 year of empirical data



Spanner

Make it easy for developers to build apps!
Reads dominant, make them lock-free

TrueTime exposes clock uncertainty

— Commit wait ensures transactions end after their
commit time

— Read at TT.now.latest()

Globally-distributed database
— 2PL w/ 2PC over Paxos!



Known unknowns > unknown unknowns

Rethink algorithms to reason about
uncertainty



