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Data-Parallel Computation
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Ex: Word count using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs
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Putting it together…

map combine partition
(“shuffle”)

reduce



5

Synchronization 
Barrier
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Fault Tolerance in MapReduce

• Map worker writes intermediate output to local disk, 
separated by partitioning. Once completed, tells 
master node

• Reduce worker told of location of map task outputs, 
pulls their partition’s data from each mapper, execute 
function across data

• Note:
– “All-to-all” shuffle b/w mappers and reducers
– Written to disk (“materialized”) b/w each stage



Generality vs Specialization
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General Systems

• Can be used for many different applications

• Jack of all trades, master of none

– Pay a generality penalty

• Once a specific application, or class of 

applications becomes sufficiently important, 

time to build specialized systems
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MapReduce is a General System

• Can express large computations on large data; 
enables fault tolerant, parallel computation

• Fault tolerance is an inefficient fit for many 
applications

• Parallel programming model (map, reduce) within 
synchronous rounds is an inefficient fit for many 
applications



MapReduce for Google’s Index
• Flagship application in original MapReduce paper

• Q: What is inefficient about MapReduce for computing 
web indexes?
– “MapReduce and other batch-processing systems cannot 

process small updates individually as they rely on creating 
large batches for efficiency.”

• Index moved to Percolator in ~2010 [OSDI ‘10]

– Incrementally process updates to index
– Uses OCC to apply updates
– 50% reduction in average age of documents
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MapReduce for Iterative Computations

• Iterative computations: compute on the same data as we 
update it
– e.g., PageRank
– e.g., Logistic regression

• Q: What is inefficient about MapReduce for these?
– Writing data to disk between all iterations is slow

• Many systems designed for iterative computations, most 
notable is Apache Spark
– Key idea 1: Keep data in memory once loaded
– Key idea 2: Provide fault tolerance via lineage:

• Save data to disks occasionally, remember computation that created 
later version of data.  Use lineage to recompute data that is lost due to 
failure.
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MapReduce for Stream Processing

• Stream processing: Continuously process an 
infinite stream of incoming events
– e.g., estimating traffic conditions from GPS data
– e.g., identify trending hashtags on twitter
– e.g., detect fraudulent ad-clicks

• Q: What is inefficient about MapReduce for 
these?
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Stream Processing Systems

• Many stream processing systems as well, typical structure:
– Definite computation ahead of time
– Setup machines to run specific parts of computation and pass data around 

(topology)
– Stream data into topology
– Repeat forever
– Trickiest part: fault tolerance!

• Notably systems and their fault tolerance
– Apache/Twitter Storm: Record acknowledgment 
– Spark Streaming: Micro-batches
– Google Cloud dataflow: transactional updates
– Apache Flink: Distributed snapshot

• Specialization is much faster, e.g., click-fraud detection at Microsoft
– Batch-processing system: 6 hours
– w/ StreamScope[NSDI ‘16]: 20 minute average
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In-Memory Data-Parallel 
Computation
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Iterative Algorithms

• MR doesn’t efficiently express iterative algorithms:
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MapAbuse: Iterative MapReduce
• System is not optimized for iteration:
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Spark: Resilient Distributed Datasets

• Let’s think of just having a big block of RAM, 
partitioned across machines…
– And a series of operators that can be executed in 

parallel across the different partitions

• That’s basically Spark
– A distributed memory abstraction that is both 

fault-tolerant and efficient
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• Restricted form of distributed shared memory
– Immutable, partitioned collections of records
– Can only be built through coarse-grained

deterministic transformations (map, filter, join, …)
– They are called Resilient Distributed Datasets (RDDs)

• Efficient fault recovery using lineage
– Log one operation to apply to many elements
– Recompute lost partitions on failure
– No cost if nothing fails

Spark: Resilient Distributed Datasets
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Spark Programming Interface

• Language-integrated API in Scala (+ Python)
• Usable interactively via Spark shell
• Provides:

– Resilient distributed datasets (RDDs)
– Operations on RDDs: deterministic 

transformations (build new RDDs), actions
(compute and output results)

– Control of each RDD’s partitioning (layout across 
nodes) and persistence (storage in RAM, on disk, 
etc)
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Example: Log Mining

• Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startsWith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

messages.persist()
Block 1

Block 2

Block 3

Worker

Worker

Worker

Master

messages.filter(_.contains(“foo”)).count
messages.filter(_.contains(“bar”)).count

tasks
results

Msgs. 1

Msgs. 2

Msgs. 3

Base RDDTransformed RDD

Action
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In-Memory Data Sharing

Input

query 1

query 2

query 3

.  .  .

one-time
processing

iter. 1 iter. 2 .  .  .

Input
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Efficient Fault Recovery via Lineage

Input

query 1

query 2

query 3

.  .  .

one-time
processing

iter. 1 iter. 2 .  .  .

Input

Maintain a reliable log of applied operations

Recompute lost partitions on failure
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Generality of RDDs

• Despite their restrictions, RDDs can express many 
parallel algorithms
– These naturally apply the same operation to many 

items
• Unify many programming models

– Data flow models: MapReduce, Dryad, SQL, …
– Specialized models for iterative apps: BSP (Pregel), 

iterative MapReduce (Haloop), bulk incremental, …
• Support new apps that these models don’t
• Enables apps to efficiently intermix these models

23



Spark Operations

Transformations
(define a new RDD)

map
filter

sample
groupByKey
reduceByKey

sortByKey

flatMap
union
join

cogroup
cross

mapValues

Actions
(return a result to 
driver program)

collect
reduce
count
save

lookupKey
take
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Task Scheduler

• DAG of stages to 
execute

• Pipelines functions
within a stage

• Locality & data 
reuse aware

• Partitioning-aware
to avoid shuffles

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partitionNarrow dependencies

Wide dependencies
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Spark Summary

• Global aggregate computations that produce 
program state
– compute the count() of an RDD, compute the max diff, 

etc.
• Loops!

– Spark makes it much easier to do multi-stage 
MapReduce

• Built-in abstractions for some other common 
operations like joins

• See also Apache Flink for a flexible big data 
platform
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