

Blockchain Systems

CS 240: Computing Systems and Concurrency Lecture 21

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Bitcoin: 10,000 foot view

- New bitcoins are “created” every ~10 min, owned by “miner” (more on this later)
- Thereafter, just keep record of transfers
 - e.g., Alice pays Bob 1 BTC
- Basic protocol:
 - Alice signs transaction: $txn = \text{Sign}_{\text{Alice}}(\text{BTC}, \text{PK}_{\text{Bob}})$
 - Alice shows transaction to others...

Problem: Equivocation!

Can Alice “pay” both Bob and Charlie
with same bitcoin ?

(Known as “double spending”)

How traditional e-cash handled problem

- When Alice pays Bob with a coin, Bob validates that coin hasn't been spent with trusted third party
- Introduced “blind signatures” and “zero-knowledge protocols” so bank can't link withdrawals and deposits

How traditional e-cash handled problem

- When Alice pays Bob with a coin, Bob validates that coin hasn't been spent with trusted third party

Bank maintains linearizable log of transactions

Problem: Equivocation!

Goal: No double-spending in decentralized environment

Approach: Make transaction log

1. public
2. append-only
3. strongly consistent

Bitcoin: 10,000 foot view

- Public
 - Transactions are signed: $\text{txn} = \text{Sign}_{\text{Alice}}(\text{BTC}, \text{PK}_{\text{Bob}})$
 - All transactions are sent to all network participants
- No equivocation: Log append-only and consistent
 - All transactions part of a hash chain
 - Consensus on set/order of operations in hash chain

Cryptographic hash function

(and their use in blockchain)

Cryptography Hash Functions I

- Take message m of arbitrary length and produces fixed-size (short) number $H(m)$
- One-way function
 - Efficient: Easy to compute $H(m)$
 - **Hiding property:** Hard to find an m , given $H(m)$
 - Assumes “m” has sufficient entropy, not just {"heads", "tails"}
 - **Random:** Often assumes for output to “look” random

Cryptography Hash Functions II

- Collisions exist: $| \text{possible inputs} | \gg | \text{possible outputs} |$
... but hard to find
- Collision resistance:
 - Strong resistance: Find any $m \neq m'$ such that $H(m) = H(m')$
 - Weak resistance: Given m , find m' such that $H(m) = H(m')$
 - For 160-bit hash (SHA-1)
 - Finding any collision is birthday paradox: $2^{\{160/2\}} = 2^{80}$
 - Finding specific collision requires 2^{160}

Hash Pointers

Hash chains

Creates a “tamper-evident” log of data

Hash chains

If data changes, all subsequent hash pointers change
Otherwise, found a hash collision!

Blockchain

Append-only hash chain

Blockchain: Append-only hash chain

- Hash chain creates “tamper-evident” log of txns
- Security based on collision-resistance of hash function
 - Given m and $h = \text{hash}(m)$, difficult to find m' such that $h = \text{hash}(m')$ and $m \neq m'$

Blockchain: Append-only hash chain

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits of a purely peer-to-peer system are its technical properties. A system in which trust is distributed rather than centralized is called a distributed system or a peer-to-peer system.

Problem remains: forking

Goal: Consensus

- Recall Byzantine fault-tolerant protocols to achieve consensus of replicated log
 - Requires: $n \geq 3f + 1$ nodes, at most f faulty
- Problem
 - Communication complexity is n^2
 - Requires **view** of network participants

Consensus susceptible to Sybils

- All consensus protocols based on membership...
 - ... assume independent failures ...
 - ... which implies strong notion of identity
- “Sybil attack” (P2P literature ~2002)
 - **Idea:** one entity can create many “identities” in system
 - **Typical defense:** 1 IP address = 1 identity
 - **Problem:** IP addresses aren’t difficult / expensive to get, esp. in world of botnets & cloud services

Consensus based on “work”

- Rather than “count” IP addresses, bitcoin “counts” the amount of CPU time / electricity that is expended

“The system is secure as long as honest nodes collectively control more CPU power than any cooperating group of attacker nodes.”

- Satoshi Nakamoto

- Proof-of-work: Cryptographic “proof” that certain amount of CPU work was performed

Key idea: Chain length requires work

- Generating a new block requires “proof of work”
- “Correct” nodes accept longest chain
- Creating fork requires rate of malicious work \gg rate of correct
 - So, the older the block, the “safer” it is from being deleted

Use hashing to determine work!

- Hash functions are one-way / collision resistant
 - Given h , hard to find m such that $h = \text{hash}(m)$
- But what about finding partial collision?
 - m whose hash has most significant bit = 0?
 - m whose hash has most significant bit = 00?
 - Assuming output is randomly distributed, complexity grows exponentially with # bits to match

Bitcoin proof of work

Find **nonce** such that

$$\text{hash}(\text{nonce} \parallel \text{prev_hash} \parallel \text{block data}) < \text{target}$$

i.e., hash has certain number of leading 0's

What about changes in total system hashing rate?

- Target is recalculated every 2 weeks
- Goal: One new block every 10 minutes

Historical hash rate trends of bitcoin

Currently (Nov '19):

45.9 Exahash/s
 2×10^{18}

Tech: CPU → GPU → FPGA → ASICs

Why consume all this energy?

- Creating a new block creates bitcoin!
 - Initially 50 BTC, decreases over time, currently 12.5
 - New bitcoin assigned to party named in new block
 - Called “mining” as you search for gold/coins

Incentivizing correct behavior?

- Race to find nonce and claim block reward, at which time race starts again for next block
 - **hash (nonce || prev_hash || block data)**
- Correct behavior is to accept longest chain
 - “Length” determined by aggregate work, not # blocks
 - So miners incentivized only to work on longest chain, as otherwise solution not accepted
 - Remember blocks on other forks still “create” bitcoin, but only matters if chain in collective conscious (majority)

Form of randomized leader election

- Each time a nonce is found:
 - New leader elected for past epoch (~10 min)
 - Leader elected randomly, probability of selection proportional to leader's % of global hashing power
 - Leader decides which transactions comprise block

One block = many transactions

- Each miner picks a set of transactions for block
- Builds “block header”: prevhash, version, timestamp, txns, ...
- Until $\text{hash} < \text{target}$ OR another node wins:
 - Pick nonce for header, compute $\text{hash} = \text{SHA256}(\text{SHA256}(\text{header}))$

Transactions are delayed

- At some time T , block header constructed
- Those transactions had been received $[T - 10 \text{ min}, T]$
- Block will be generated at time $T + 10 \text{ min}$ (on average)
- So transactions are from 10 - 20 min before block creation
- Can be much longer if “backlog” of transactions are long

Commitments further delayed

- When do you trust a transaction?
 - After we know it is “stable” on the hash chain
 - Recall that the longer the chain, the hard to “revert”
- Common practice: transaction “committed” when 6 blocks deep
 - i.e., Takes another ~1 hour for txn to become committed

Transaction format: strawman

Create 12.5 coins, credit to Alice

Transfer 3 coins from Alice to Bob

SIGNED(Alice)

Transfer 8 coins from Bob to Carol

SIGNED(Bob)

Transfer 1 coins from Carol to Alice

SIGNED(Carol)

Transfer 5 coins from Alice to David

SIGNED(Alice)

How do you determine if Alice has balance?

Scan backwards to time 0 !

Transaction format

Inputs: \emptyset // Coinbase reward

Outputs: 25.0→PK_Alice

Inputs: $H(\text{prevtxn}, 0)$ // 25 BTC from Alice

Outputs: 25.0→PK_Bob

SIGNED(Alice)

Inputs: $H(\text{prevtxn}, 0)$ // 25 BTC

change address

Outputs: 5.0→PK_Bob, 20.0→PK_Alice2

SIGNED(Alice)

Inputs: $H(\text{prevtxn1}, 1), H(\text{prevtxn2}, 0)$ // 10+5 BTC

Outputs: 14.9→PK_Bob

SIGNED(Alice)

- Transaction typically has 1+ inputs, 1+ outputs
- Making change: 1st output payee, 2nd output self
- Output can appear in single later input (avoids scan back)

Transaction format

Inputs: \emptyset // Coinbase reward

Outputs: 25.0→PK_Alice

Inputs: $H(\text{prevtxn}, 0)$ // 25 BTC from Alice

Outputs: 25.0→PK_Bob **SIGNED(Alice)**

Inputs: $H(\text{prevtxn}, 0)$ // 25 BTC From Alice

Outputs: 5.0→PK_Bob, 20.0 →PK_Alice2 **SIGNED(Alice)**

Inputs: $H(\text{prevtxn1}, 1), H(\text{prevtxn2}, 0)$ // 10+5 BTC

Outputs: 14.9→PK_Bob **SIGNED(Alice)**

- Unspent portion of inputs is “transaction fee” to miner
- In fact, “outputs” are stack-based scripts
- 1 Block = 1MB max

Storage / verification efficiency

- Merkle tree
 - Binary tree of hashes
 - Root hash “binds” leaves given collision resistance
- Using a root hash
 - Block header now constant size for hashing
 - Can prune tree to reduce storage needs over time

Storage / verification efficiency

- Merkle tree
 - Binary tree of hashes
 - Root hash “binds” leaves given collision resistance
- Using a root hash
 - Block header now constant size for hashing
 - Can prune tree to reduce storage needs over time
 - Can prune when all txn outputs are spent
 - Currently: 190GB

Not panacea of scale as some claim

- Scaling limitations
 - 1 block = 1 MB max
 - 1 block ~ 2000 txns
 - 1 block ~ 10 min
 - So, 3-4 txns / sec
 - Log grows linearly, joining requires full download and verification
- Visa peak load comparison
 - Typically 2,000 txns / sec
 - Peak load in 2013: 47,000 txns / sec

Summary

- Coins xfer/split between “addresses” (PK) in txns
- Blockchain: Global ordered, append-only log of txns
 - Reached through decentralized consensus
 - Each epoch, “random” node selected to batch transactions into block and append block to log
 - Nodes incentivized to perform work and act correctly
 - When “solve” block, get block rewards + txn fees
 - Reward: 12.5 BTC @ ~7,200 USD/BTC (11-27-19) = \$90,000 / 10 min
 - Only “keep” reward if block persists on main chain

Bitcoin & blockchain intrinsically linked

What can a “51% attacker” do?

- Steal coins from existing address? X
- Suppress some transactions?
 - From the blockchain? ✓
 - From the P2P network? X
- Change the block reward? X
- Destroy confidence in Bitcoin? ✓

Rich ecosystem: Mining pools

health of
mining
ecosystem

- Mining == gambling:
 - Electricity costs \$, huge payout, low probability of winning
- Development of mining pools to ***amortize risk***
 - Pool computational resources, participants “paid” to mine e.g., rewards “split” as a fraction of work, etc
 - Verification? Demonstrate “easier” proofs of work to admins
 - Prevent theft? Block header (coinbase txn) given by pool

Selfish Mine Strategy

Selfish Mining

Goal: Get more than fair share

How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Selfish Mining

Goal: Get more than fair share

How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Selfish Mining

Goal: Get more than fair share

How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Selfish Mining

Goal: Get more than fair share

How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Selfish Mining

Goal: Get more than fair share

How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Analysis of Selfish-Mine Strategy

- α = mining power of selfish pool miners
- γ = ratio of honest miners that mine on the selfish pool block

Fig. 2: Pool revenue using the Selfish-Mine strategy for different values of γ . The graph shows that the revenue for a selfish pool of size α is always better than the honest mining revenue for α in the range $\alpha > \alpha_0(\gamma)$, where $\alpha_0(\gamma)$ is a threshold that depends on γ .

In the extreme, 1/3 of selfish miners get a revenue that is always better than the honest miners above a threshold, which depends on γ .

Observation 1 For a given γ , a pool of size α obtains a revenue larger than its relative size for α in the following range:

$$\frac{1 - \gamma}{3 - 2\gamma} < \alpha < \frac{1}{2} . \quad (9)$$

More than just a currency...

WEB 2.0 → WEB 3.0 COMPARISON LANDSCAPE. WELCOME INTERNET OF BLOCKCHAINS

Blockchain Use Cases: Comprehensive Analysis & Startups Involved

