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• New bitcoins are “created” every ~10 min,                    
owned by “miner” (more on this later)

• Thereafter, just keep record of transfers
– e.g., Alice pays Bob 1 BTC

• Basic protocol:
– Alice signs transaction:   txn = SignAlice (BTC, PKBob)

– Alice shows transaction to others…

2

Bitcoin: 10,000 foot view



Can Alice “pay” both Bob and Charlie 
with same bitcoin ?

( Known as “double spending” )
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Problem:  Equivocation!
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How traditional e-cash handled problem

• When Alice pays Bob with a coin, Bob validates that coin 
hasn’t been spent with trusted third party

• Introduced “blind signatures” and “zero-knowledge protocols” 
so bank can’t link withdrawals and deposits

Alice Bob

Bank 
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How traditional e-cash handled problem

• When Alice pays Bob with a coin, Bob validates that coin 
hasn’t been spent with trusted third party

• Introduced “blind signatures” and “zero-knowledge protocols” 
so bank can’t link withdrawals and deposits

Alice Bob

Bank 

Bank maintains linearizable log of transactions



Problem:  Equivocation!

Goal:  No double-spending in decentralized environment

Approach:  Make transaction log    

1. public

2. append-only
3. strongly consistent
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• Public 

– Transactions are signed:   txn = SignAlice (BTC, PKBob)

– All transactions are sent to all network participants

• No equivocation:  Log append-only and consistent

– All transactions part of a hash chain

– Consensus on set/order of operations in hash chain
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Bitcoin: 10,000 foot view



Cryptographic hash function

( and their use in blockchain )
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Cryptography Hash Functions I

• Take message m of arbitrary length and produces  
fixed-size (short) number H(m)

• One-way function
– Efficient:  Easy to compute H(m)

– Hiding property: Hard to find an m, given H(m)  
• Assumes “m” has sufficient entropy, not just {“heads”, “tails”}

– Random:  Often assumes for output to “look” random
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Cryptography Hash Functions II

• Collisions exist:  | possible inputs | >> | possible outputs |              

… but hard to find

• Collision resistance:

– Strong resistance:   Find any m != m’ such that    H(m) == H(m’)

– Weak resistance: Given m,  find m’ such that    H(m) == H(m’)

– For 160-bit hash (SHA-1)

• Finding any collision is birthday paradox:  2^{160/2} = 2^80
• Finding specific collision requires 2^160 
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Hash Pointers

h = H(  )
(data)



Creates a “tamper-evident” log of data
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Hash chains

data

prev: H(  )

data

prev: H(  )

data

prev: H(  )

H(  )



If data changes, all subsequent hash pointers change

Otherwise, found a hash collision! 
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Hash chains

data

prev: H(  )

data

prev: H(  )

data

prev: H(  )

H(  )



Blockchain

Append-only hash chain
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• Hash chain creates “tamper-evident” log of txns

• Security based on collision-resistance of hash function
– Given m and h = hash(m), difficult to find m’                          

such that  h = hash(m’) and m != m’
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Blockchain: Append-only hash chain

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )
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Blockchain: Append-only hash chain
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Problem remains:  forking

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

txn 7’

prev: H(  )

txn 6’

prev: H(  )



• Recall Byzantine fault-tolerant protocols to 
achieve consensus of replicated log
– Requires: n >= 3f + 1 nodes, at most f  faulty 

• Problem  
– Communication complexity is n2

– Requires view of network participants
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Goal: Consensus



• All consensus protocols based on membership…
– … assume independent failures …

– … which implies strong notion of identity

• “Sybil attack”  (P2P literature ~2002)
– Idea: one entity can create many “identities” in system

– Typical defense:  1 IP address =  1 identity

– Problem:  IP addresses aren’t difficult / expensive to get,                     
esp. in world of botnets & cloud services
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Consensus susceptible to Sybils



• Rather than “count” IP addresses, bitcoin “counts” the 
amount of CPU time / electricity that is expended

• Proof-of-work:  Cryptographic “proof” that certain 
amount of CPU work was performed
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Consensus based on “work”

“The system is secure as long as honest nodes 
collectively control more CPU power than any 
cooperating group of attacker nodes.”

- Satoshi Nakamoto
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Key idea: Chain length requires work

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

• Generating a new block requires “proof of work”

• “Correct” nodes accept longest chain 

• Creating fork requires rate of malicious work >> rate of correct
– So, the older the block, the “safer” it is from being deleted

txn 9

prev: H(  )

txn 8

prev: H(  )

txn 6’

prev: H(  )



• Hash functions are one-way / collision resistant

– Given h, hard to find m such that h = hash(m)

• But what about finding partial collision?

– m whose hash has most significant bit = 0?

– m whose hash has most significant bit = 00?

– Assuming output is randomly distributed, complexity grows 
exponentially with # bits to match
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Use hashing to determine work!



Find nonce such that

hash (nonce || prev_hash || block data)  <  target

i.e., hash has certain number of leading 0’s

What about changes in total system hashing rate?

• Target is recalculated every 2 weeks

• Goal:  One new block every 10 minutes
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Bitcoin proof of work
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Historical hash rate trends of bitcoin

Currently (Nov ’19): 45.9 Exahash/s
2 x 1018

Tech:  CPU → GPU → FPGA → ASICs 
https://bitcoinwisdom.com/bitcoin/difficulty

https://bitcoinwisdom.com/bitcoin/difficulty


• Creating a new block creates bitcoin!
– Initially 50 BTC, decreases over time, currently 12.5

– New bitcoin assigned to party named in new block

– Called “mining” as you search for gold/coins
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Why consume all this energy?



• Race to find nonce and claim block reward, at which time 
race starts again for next block

hash (nonce || prev_hash || block data) 

– As solution has prev_hash, corresponds to particular chain

• Correct behavior is to accept longest chain

– “Length” determined by aggregate work, not # blocks

– So miners incentivized only to work on longest chain, as 
otherwise solution not accepted

– Remember blocks on other forks still “create” bitcoin, but 
only matters if chain in collective conscious (majority) 26

Incentivizing correct behavior?



• Each time a nonce is found:

– New leader elected for past epoch (~10 min) 

– Leader elected randomly, probability of selection 
proportional to leader’s % of global hashing power

– Leader decides which transactions comprise block
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Form of randomized leader election
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One block = many transactions

• Each miner picks a set of transactions for block

• Builds “block header”: prevhash, version, timestamp, txns, …

• Until hash < target OR another node wins:

– Pick nonce for header, compute hash = SHA256(SHA256(header))
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Transactions are delayed

• At some time T, block header constructed

• Those transactions had been received [ T – 10 min, T] 

• Block will be generated at time T + 10 min (on average)
• So transactions are from 10 - 20 min before block creation

• Can be much longer if “backlog” of transactions are long



30

Commitments further delayed

• When do you trust a transaction?
– After we know it is “stable” on the hash chain
– Recall that the longer the chain, the hard to “revert”

• Common practice:  transaction “committed” when 6 blocks deep

– i.e., Takes another ~1 hour for txn to become committed
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Transaction format:  strawman

Create 12.5 coins, credit to Alice

Transfer 3 coins from Alice to Bob SIGNED(Alice)

Transfer 8 coins from Bob to Carol SIGNED(Bob)

Transfer 1 coins from Carol to Alice SIGNED(Carol)

How do you determine if Alice has balance?  
Scan backwards to time 0 !

Transfer 5 coins from Alice to David  SIGNED(Alice)
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Transaction format
Inputs: Ø // Coinbase reward
Outputs: 25.0→PK_Alice

Inputs: H(prevtxn, 0) // 25 BTC from Alice
Outputs: 25.0→PK_Bob SIGNED(Alice)

Inputs: H (prevtxn, 0) // 25 BTC From Alice
Outputs: 5.0→PK_Bob, 20.0 →PK_Alice2 SIGNED(Alice)

Inputs: H (prevtxn1, 1), H(prevtxn2, 0)   // 10+5 BTC
Outputs: 14.9→PK_Bob SIGNED(Alice)

• Transaction typically has 1+ inputs, 1+ outputs

• Making change:  1st output payee, 2nd output self

• Output can appear in single later input (avoids scan back)

change address
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Transaction format
Inputs: Ø // Coinbase reward
Outputs: 25.0→PK_Alice

• Unspent portion of inputs is “transaction fee” to miner

• In fact, “outputs” are stack-based scripts
• 1 Block = 1MB max

Inputs: H(prevtxn, 0) // 25 BTC from Alice
Outputs: 25.0→PK_Bob SIGNED(Alice)

Inputs: H (prevtxn, 0) // 25 BTC From Alice
Outputs: 5.0→PK_Bob, 20.0 →PK_Alice2 SIGNED(Alice)

Inputs: H (prevtxn1, 1), H(prevtxn2, 0)   // 10+5 BTC
Outputs: 14.9→PK_Bob SIGNED(Alice)
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Storage / verification efficiency
• Merkle tree

– Binary tree of hashes
– Root hash “binds” leaves 

given collision resistance

• Using a root hash 
– Block header now 

constant size for hashing
– Can prune tree to reduce 

storage needs over time
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Storage / verification efficiency
• Merkle tree

– Binary tree of hashes
– Root hash “binds” leaves 

given collision resistance

• Using a root hash 
– Block header now 

constant size for hashing
– Can prune tree to reduce 

storage needs over time
– Can prune when all 

txn outputs are spent
– Currently: 190GB
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Not panacea of scale as some claim

• Scaling limitations
– 1 block = 1 MB max
– 1 block ~ 2000 txns
– 1 block ~ 10 min
– So, 3-4 txns / sec
– Log grows linearly, joining requires full dload and verification

• Visa peak load comparison
– Typically 2,000 txns / sec
– Peak load in 2013:  47,000 txns / sec

bl
oc

k 
siz

e
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Summary

• Coins xfer/split between “addresses” (PK) in txns

• Blockchain:  Global ordered, append-only log of txns

– Reached through decentralized consensus
• Each epoch, “random” node selected to batch  

transactions into block and append block to log

– Nodes incentivized to perform work and act correctly
• When “solve” block, get block rewards + txn fees
• Reward: 12.5 BTC @ ~7,200 USD/BTC (11-27-19) =

$90,000 / 10 min
• Only “keep” reward if block persists on main chain
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Bitcoin & blockchain intrinsically linked

security of 
blockchain

value of 
currency

health of 
mining 

ecosystem



• Steal coins from existing address?

• Suppress some transactions?
– From the blockchain?
– From the P2P network?

• Change the block reward?

• Destroy confidence in Bitcoin?
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What can a “51% attacker” do?

✗

✓

✗

✓

✗
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Rich ecosystem:   Mining pools

• Mining == gambling:
– Electricity costs $, huge payout, low probability of winning

• Development of mining pools to amortize risk
– Pool computational resources, participants “paid” to mine            

e.g.,  rewards “split” as a fraction of work, etc
– Verification?  Demonstrate “easier” proofs of work to admins
– Prevent theft?  Block header (coinbase txn) given by pool

health of 
mining 

ecosystem



Selfish Mine Strategy
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Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously 

Intuition: Risk some work, others waste a lot

Adopt the main branch if 
private branch is empty / 
falls behind; keep block 

private
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Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously 

Intuition: Risk some work, others waste a lot

Honest nodes publish a 
block, nullifying the lead; 
publish the private block 

and hope to win
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Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously 

Intuition: Risk some work, others waste a lot

Leading by one block; try 
to extend the lead
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Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously 

Intuition: Risk some work, others waste a lot

Leading by 2 blocks; 
publish them and win
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Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously 

Intuition: Risk some work, others waste a lot

Leading by > 2 blocks; 
publish one block and 

keep private branch lead
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Analysis of Selfish-Mine Strategy
• 𝛂 =mining power of selfish pool miners

• 𝛄 = ratio of honest miners that mine on the selfish pool block

In the extreme, 
1/3 of selfish 
miners get a 

revenue that is 
always better



More than just a currency…
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