
Blockchain Systems

CS 240: Computing Systems and Concurrency
Lecture 21

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

• New bitcoins are “created” every ~10 min,
owned by “miner” (more on this later)

• Thereafter, just keep record of transfers
– e.g., Alice pays Bob 1 BTC

• Basic protocol:
– Alice signs transaction: txn = SignAlice (BTC, PKBob)

– Alice shows transaction to others…

2

Bitcoin: 10,000 foot view

Can Alice “pay” both Bob and Charlie
with same bitcoin ?

(Known as “double spending”)

3

Problem: Equivocation!

4

How traditional e-cash handled problem

• When Alice pays Bob with a coin, Bob validates that coin
hasn’t been spent with trusted third party

• Introduced “blind signatures” and “zero-knowledge protocols”
so bank can’t link withdrawals and deposits

Alice Bob

Bank

5

How traditional e-cash handled problem

• When Alice pays Bob with a coin, Bob validates that coin
hasn’t been spent with trusted third party

• Introduced “blind signatures” and “zero-knowledge protocols”
so bank can’t link withdrawals and deposits

Alice Bob

Bank

Bank maintains linearizable log of transactions

Problem: Equivocation!

Goal: No double-spending in decentralized environment

Approach: Make transaction log

1. public

2. append-only
3. strongly consistent

6

• Public

– Transactions are signed: txn = SignAlice (BTC, PKBob)

– All transactions are sent to all network participants

• No equivocation: Log append-only and consistent

– All transactions part of a hash chain

– Consensus on set/order of operations in hash chain

7

Bitcoin: 10,000 foot view

Cryptographic hash function

(and their use in blockchain)

8

9

Cryptography Hash Functions I

• Take message m of arbitrary length and produces
fixed-size (short) number H(m)

• One-way function
– Efficient: Easy to compute H(m)

– Hiding property: Hard to find an m, given H(m)
• Assumes “m” has sufficient entropy, not just {“heads”, “tails”}

– Random: Often assumes for output to “look” random

10

Cryptography Hash Functions II

• Collisions exist: | possible inputs | >> | possible outputs |

… but hard to find

• Collision resistance:

– Strong resistance: Find any m != m’ such that H(m) == H(m’)

– Weak resistance: Given m, find m’ such that H(m) == H(m’)

– For 160-bit hash (SHA-1)

• Finding any collision is birthday paradox: 2^{160/2} = 2^80
• Finding specific collision requires 2^160

11

Hash Pointers

h = H()
(data)

Creates a “tamper-evident” log of data

12

Hash chains

data

prev: H()

data

prev: H()

data

prev: H()

H()

If data changes, all subsequent hash pointers change

Otherwise, found a hash collision!

13

Hash chains

data

prev: H()

data

prev: H()

data

prev: H()

H()

Blockchain

Append-only hash chain

14

• Hash chain creates “tamper-evident” log of txns

• Security based on collision-resistance of hash function
– Given m and h = hash(m), difficult to find m’

such that h = hash(m’) and m != m’

15

Blockchain: Append-only hash chain

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

16

Blockchain: Append-only hash chain

17

Problem remains: forking

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

txn 7’

prev: H()

txn 6’

prev: H()

• Recall Byzantine fault-tolerant protocols to
achieve consensus of replicated log
– Requires: n >= 3f + 1 nodes, at most f faulty

• Problem
– Communication complexity is n2

– Requires view of network participants

18

Goal: Consensus

• All consensus protocols based on membership…
– … assume independent failures …

– … which implies strong notion of identity

• “Sybil attack” (P2P literature ~2002)
– Idea: one entity can create many “identities” in system

– Typical defense: 1 IP address = 1 identity

– Problem: IP addresses aren’t difficult / expensive to get,
esp. in world of botnets & cloud services

19

Consensus susceptible to Sybils

• Rather than “count” IP addresses, bitcoin “counts” the
amount of CPU time / electricity that is expended

• Proof-of-work: Cryptographic “proof” that certain
amount of CPU work was performed

20

Consensus based on “work”

“The system is secure as long as honest nodes
collectively control more CPU power than any
cooperating group of attacker nodes.”

- Satoshi Nakamoto

21

Key idea: Chain length requires work

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

• Generating a new block requires “proof of work”

• “Correct” nodes accept longest chain

• Creating fork requires rate of malicious work >> rate of correct
– So, the older the block, the “safer” it is from being deleted

txn 9

prev: H()

txn 8

prev: H()

txn 6’

prev: H()

• Hash functions are one-way / collision resistant

– Given h, hard to find m such that h = hash(m)

• But what about finding partial collision?

– m whose hash has most significant bit = 0?

– m whose hash has most significant bit = 00?

– Assuming output is randomly distributed, complexity grows
exponentially with # bits to match

22

Use hashing to determine work!

Find nonce such that

hash (nonce || prev_hash || block data) < target

i.e., hash has certain number of leading 0’s

What about changes in total system hashing rate?

• Target is recalculated every 2 weeks

• Goal: One new block every 10 minutes
23

Bitcoin proof of work

24

Historical hash rate trends of bitcoin

Currently (Nov ’19): 45.9 Exahash/s
2 x 1018

Tech: CPU → GPU → FPGA → ASICs
https://bitcoinwisdom.com/bitcoin/difficulty

https://bitcoinwisdom.com/bitcoin/difficulty

• Creating a new block creates bitcoin!
– Initially 50 BTC, decreases over time, currently 12.5

– New bitcoin assigned to party named in new block

– Called “mining” as you search for gold/coins
25

Why consume all this energy?

• Race to find nonce and claim block reward, at which time
race starts again for next block

hash (nonce || prev_hash || block data)

– As solution has prev_hash, corresponds to particular chain

• Correct behavior is to accept longest chain

– “Length” determined by aggregate work, not # blocks

– So miners incentivized only to work on longest chain, as
otherwise solution not accepted

– Remember blocks on other forks still “create” bitcoin, but
only matters if chain in collective conscious (majority) 26

Incentivizing correct behavior?

• Each time a nonce is found:

– New leader elected for past epoch (~10 min)

– Leader elected randomly, probability of selection
proportional to leader’s % of global hashing power

– Leader decides which transactions comprise block

27

Form of randomized leader election

28

One block = many transactions

• Each miner picks a set of transactions for block

• Builds “block header”: prevhash, version, timestamp, txns, …

• Until hash < target OR another node wins:

– Pick nonce for header, compute hash = SHA256(SHA256(header))

29

Transactions are delayed

• At some time T, block header constructed

• Those transactions had been received [T – 10 min, T]

• Block will be generated at time T + 10 min (on average)
• So transactions are from 10 - 20 min before block creation

• Can be much longer if “backlog” of transactions are long

30

Commitments further delayed

• When do you trust a transaction?
– After we know it is “stable” on the hash chain
– Recall that the longer the chain, the hard to “revert”

• Common practice: transaction “committed” when 6 blocks deep

– i.e., Takes another ~1 hour for txn to become committed

31

Transaction format: strawman

Create 12.5 coins, credit to Alice

Transfer 3 coins from Alice to Bob SIGNED(Alice)

Transfer 8 coins from Bob to Carol SIGNED(Bob)

Transfer 1 coins from Carol to Alice SIGNED(Carol)

How do you determine if Alice has balance?
Scan backwards to time 0 !

Transfer 5 coins from Alice to David SIGNED(Alice)

32

Transaction format
Inputs: Ø // Coinbase reward
Outputs: 25.0→PK_Alice

Inputs: H(prevtxn, 0) // 25 BTC from Alice
Outputs: 25.0→PK_Bob SIGNED(Alice)

Inputs: H (prevtxn, 0) // 25 BTC From Alice
Outputs: 5.0→PK_Bob, 20.0 →PK_Alice2 SIGNED(Alice)

Inputs: H (prevtxn1, 1), H(prevtxn2, 0) // 10+5 BTC
Outputs: 14.9→PK_Bob SIGNED(Alice)

• Transaction typically has 1+ inputs, 1+ outputs

• Making change: 1st output payee, 2nd output self

• Output can appear in single later input (avoids scan back)

change address

33

Transaction format
Inputs: Ø // Coinbase reward
Outputs: 25.0→PK_Alice

• Unspent portion of inputs is “transaction fee” to miner

• In fact, “outputs” are stack-based scripts
• 1 Block = 1MB max

Inputs: H(prevtxn, 0) // 25 BTC from Alice
Outputs: 25.0→PK_Bob SIGNED(Alice)

Inputs: H (prevtxn, 0) // 25 BTC From Alice
Outputs: 5.0→PK_Bob, 20.0 →PK_Alice2 SIGNED(Alice)

Inputs: H (prevtxn1, 1), H(prevtxn2, 0) // 10+5 BTC
Outputs: 14.9→PK_Bob SIGNED(Alice)

34

Storage / verification efficiency
• Merkle tree

– Binary tree of hashes
– Root hash “binds” leaves

given collision resistance

• Using a root hash
– Block header now

constant size for hashing
– Can prune tree to reduce

storage needs over time

35

Storage / verification efficiency
• Merkle tree

– Binary tree of hashes
– Root hash “binds” leaves

given collision resistance

• Using a root hash
– Block header now

constant size for hashing
– Can prune tree to reduce

storage needs over time
– Can prune when all

txn outputs are spent
– Currently: 190GB

36

Not panacea of scale as some claim

• Scaling limitations
– 1 block = 1 MB max
– 1 block ~ 2000 txns
– 1 block ~ 10 min
– So, 3-4 txns / sec
– Log grows linearly, joining requires full dload and verification

• Visa peak load comparison
– Typically 2,000 txns / sec
– Peak load in 2013: 47,000 txns / sec

bl
oc

k
siz

e

37

Summary

• Coins xfer/split between “addresses” (PK) in txns

• Blockchain: Global ordered, append-only log of txns

– Reached through decentralized consensus
• Each epoch, “random” node selected to batch

transactions into block and append block to log

– Nodes incentivized to perform work and act correctly
• When “solve” block, get block rewards + txn fees
• Reward: 12.5 BTC @ ~7,200 USD/BTC (11-27-19) =

$90,000 / 10 min
• Only “keep” reward if block persists on main chain

38

Bitcoin & blockchain intrinsically linked

security of
blockchain

value of
currency

health of
mining

ecosystem

• Steal coins from existing address?

• Suppress some transactions?
– From the blockchain?
– From the P2P network?

• Change the block reward?

• Destroy confidence in Bitcoin?

39

What can a “51% attacker” do?

✗

✓

✗

✓

✗

40

Rich ecosystem: Mining pools

• Mining == gambling:
– Electricity costs $, huge payout, low probability of winning

• Development of mining pools to amortize risk
– Pool computational resources, participants “paid” to mine

e.g., rewards “split” as a fraction of work, etc
– Verification? Demonstrate “easier” proofs of work to admins
– Prevent theft? Block header (coinbase txn) given by pool

health of
mining

ecosystem

Selfish Mine Strategy

41

42

Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Adopt the main branch if
private branch is empty /
falls behind; keep block

private

43

Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Honest nodes publish a
block, nullifying the lead;
publish the private block

and hope to win

44

Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Leading by one block; try
to extend the lead

45

Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Leading by 2 blocks;
publish them and win

46

Selfish Mining

Goal: Get more than fair share
How: Maintain secret blocks, publish judiciously

Intuition: Risk some work, others waste a lot

Leading by > 2 blocks;
publish one block and

keep private branch lead

47

Analysis of Selfish-Mine Strategy
• 𝛂 =mining power of selfish pool miners

• 𝛄 = ratio of honest miners that mine on the selfish pool block

In the extreme,
1/3 of selfish
miners get a

revenue that is
always better

More than just a currency…

48

49

50

