
Vector Clocks and
Distributed Snapshots

CS 240: Computing Systems and Concurrency
Lecture 5

Marco Canini
Credits: Kyle Jamieson developed much of the original material.

Today
1. Logical Time: Vector clocks

2. Distributed Global Snapshots

2

• Happens-Before relationship
– Event a happens before event b (a à b)
– c, d not related by à so concurrent, written as c || d

• Lamport clocks is a logical clock construction to capture the
order of events in a distributed systems
(disregarding the precise clock time)
– Tag every event a by C(a)
– If a à b, then ?
– If C(a) < C(b), then ?
– If a || b, then ?

3

Lamport Clocks Review

• Happens-before relationship
– Event a happens before event b (a à b)
– c, d not related by à so concurrent, written as c || d

• Lamport clocks is a logical clock construction to capture the
order of events in a distributed systems
(disregarding the precise clock time)
– Tag every event a by C(a)
– If a à b, then C(a) < C(b)
– If C(a) < C(b), then NOT b à a (a à b or a || b)
– If a || b, then nothing

4

Lamport Clocks Review

• Lamport clock timestamps don’t capture causality

• Given two timestamps C(a) and C(z), want to know
whether there’s a chain of events linking them:

a à b à ... à y à z

5

Lamport Clocks and causality

• One integer can’t order events in more than one process

• So, a Vector Clock (VC) is a vector of integers, one entry
for each process in the entire distributed system

– Label event e with VC(e) = [c1, c2 …, cn]

• Each entry ck is a count of events in process k
that causally precede e

6

Vector clock: Introduction

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment local entry ci

2. If process j receives message with vector [d1, d2, …, dn]:
– Set each local entry ck = max{ck, dk}, for k = 1…n
– Increment local entry cj

7

Vector clock: Update rules

• All processes’ VCs start at
[0, 0, 0]

• Applying local update rule

• Applying message rule
– Local vector clock

piggybacks on inter-
process messages

8

Vector clock: Example

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[2,0,0]

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

[2,2,0]

• Rule for comparing vector timestamps:
– V(a) = V(b) when ak = bk for all k
– V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency:
– a || b if ai < bi and aj > bj, some i, j

9

Comparing vector timestamps

• V(w) < V(z) then there is a chain of events linked by
Happens-Before (à) between w and z

• If V(a) || V(w) then there is no such chain of events
between a and w

10

Vector clocks capture causality

x

y

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

w

z

P1 P2

[0,1,0]a

Two events a, b

Lamport clocks: C(a) < C(b)
Conclusion: NOT b à a (either a à b or a || b)

Vector clocks: V(a) < V(z)
Conclusion: a à b

11

Vector clock timestamps precisely
capture happens-before relationship

(potential causality)

• Compared to Lamport timestamps,
vector timestamps O(n) overhead for storage and
communication, n = no. of processes

12

Disadvantage of vector timestamps

Today
1. Logical Time: Vector clocks

2. Distributed Global Snapshots

– Chandy-Lamport algorithm

– Reasoning about C-L: Consistent Cuts

13

• What is the state of a distributed system?

14

Distributed Snapshots

New York
acct1 balance =

$1000
acct2 balance =

$2000

San Francisco
acct1 balance =

$1000
acct2 balance =

$2000

• N processes in the system with no process failures
– Each process has some state it keeps track of

• There are two first-in, first-out, unidirectional channels
between every process pair P and Q
– Call them channel(P, Q) and channel(Q, P)

– The channel has state, too: the set of messages inside

– All messages sent on channels arrive intact,
unduplicated, in order

15

System model

“All messages sent on channels arrive intact,
unduplicated, in order”

• Q: Arrive?
• Q: Intact?
• Q: Unduplicated?
• Q: In order?

• TCP provides all of these when processes don’t fail

16

Aside: FIFO communication channel

• At-least-once retransmission
• Network layer checksums
• At-most-once deduplication
• Sender include sequence numbers,

receiver only delivers in sequence order

Global snapshot is global state
• Each distributed system has a number of processes

running on a number of physical servers

• These processes communicate with each other via
channels

• A global snapshot captures
1. The local states of each process (e.g., program

variables), and

2. The state of each communication channel

17

Why do we need snapshots?
• Checkpointing: Restart if the application fails

• Collecting garbage: Remove objects that don’t have any
references

• Detecting deadlocks: The snapshot can examine the
current application state
– Process A grabs Lock 1, B grabs 2, A waits for 2,

B waits for 1...

• Other debugging: A little easier to work with than printf…

18

• Let’s represent process state as a set of colored tokens

• Suppose there are two processes, P and Q:

20

System model: Graphical example

P Q

Process P: Process Q:

channel(P, Q)

channel(Q, P)

R

G B

Y

O

P

Correct global snapshot =
Exactly one of each token

• Suppose we take snapshots only from a process
perspective

• Suppose snapshots happen independently at each
process

• Let’s look at the implications...

21

When is inconsistency possible?

• P, Q put tokens into channels, then snapshot

22

Problem: Disappearing tokens

P Q
R

G B
O

P

P = { G }

Y
Y

Q = { R, P }

B O

This snapshot misses Y, B, and O tokens

• P snapshots, then sends Y
• Q receives Y, then snapshots

23

Problem: Duplicated tokens

P Q
R

G B

Y

O

P

P = { G, Y }

Y Y

Q = { Y, R, P, B, O }

This snapshot duplicates the Y token

• What went wrong? We should have captured the state of
the channels as well

• Let’s send a marker message▲ to track this state
– Distinct from other messages
– Channels deliver marker and other messages FIFO

24

Idea: “Marker” messages

• We’ll designate one node (say P) to start the snapshot
– Without any steps in between, P:

1. Records its local state (“snapshots”)
2. Sends a marker on each outbound channel

• Nodes remember whether they have snapshotted

• On receiving a marker, a non-snapshotted node
performs steps (1) and (2) above

25

Chandy-Lamport algorithm: Overview

• P snapshots and sends marker, then sends Y

• Send Rule: Send marker on all outgoing channels
– Immediately after snapshot
– Before sending any further messages

26

Chandy-Lamport: Sending process

P Q
R

G B

Y

O

P

snap: P = { G, Y }

▲Y

• At the same time, Q sends orange token O
• Then, Q receives marker ▲
• Receive Rule (if not yet snapshotted)

– On receiving marker on channel c record c’s state as empty

27

Chandy-Lamport: Receiving process (1/2)

P Q
R

G B
O

P

P = { G, Y }

▲Y

O

▲

Q = { R, P, B }

channel(P,Q) = { }

• Q sends marker to P
• P receives orange token O, then marker ▲
• Receive Rule (if already snapshotted):

– On receiving marker on c record c’s state: all msgs from c
since snapshot

28

Chandy-Lamport: Receiving process (2/2)

P Q
R

G B

P

P = { G, Y }

Y

O

Q = { R, P, B }

▲

O ▲

channel(P,Q) = { }

channel(Q,P) = { O }

• Distributed algorithm: No one process decides when it
terminates

• Eventually, all processes have received a marker (and
recorded their own state)

• All processes have received a marker on all the N–1
incoming channels (and recorded their states)

• Later, a central server can gather the local states to build
a global snapshot

Terminating a snapshot

29

Today
1. Logical Time: Vector clocks

2. Distributed Global Snapshots

– Chandy-Lamport algorithm

– Reasoning about C-L: Consistent Cuts

30

31

Global state as cut of system’s execution

P1

P2

P3

A B C D

E

F

G

H

Cut = { The last event of each process, and message
of each channel that is in the cut }

Time →Snapshot of global state:
a subset of its global history

Global states and cuts
• Global state is a n-tuple of local states (one per process

and channel)

• A cut is a subset of the global history that contains an initial
prefix of each local state
– Therefore every cut is a natural global state
– Intuitively, a cut partitions the space time diagram along

the time axis

• Cut = { The last event of each process, and message of
each channel that is in the cut }

• A consistent cut is a cut that respects causality of
events

• A cut C is consistent when:

– For each pair of events e and f, if:
1. f is in the cut, and
2. e à f,

– then, event e is also in the cut

33

Consistent versus inconsistent cuts

34

Consistent versus inconsistent cuts

P1

P2

P3

A B C D

E

F

G

H

Consistent: H à F
and H in the cut

Inconsistent: G à D
but only D is in the cut

35

C-L returns a consistent cut

P1

P2

P3

A B C D

E

F

G

H

Inconsistent: G à D
but only D is in the cut

C-L can’t
return this cut

C-L ensures that if D is in the cut, then G is in the cut

36

C-L can’t return this inconsistent cut

P1

P2

P3

A B C D

E

F

G

H

sn
ap

!

• Vector Clocks
– Precisely capture happens-before relationship

• Distributed Global Snapshots
– FIFO Channels: we can do that!
– Chandy-Lamport algorithm: use marker messages to

coordinate
– Chandy-Lamport provides a consistent cut

Take-away points

37

Next Topic:
Eventual Consistency & Bayou

38

