Eventual Consistency: Bayou

alllauc Ellal) deals

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 6

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.
Selected content adapted from B. Karp, R. Morris.

Availability versus consistency

 Totally-Ordered Multicast kept replicas consistent
but had single points of failure

— Not available under failures

 (Later): Distributed consensus algorithms
— Strong consistency (ops in same order everywhere)
— But, strong reachability requirements

If the network fails (common case), can we
provide any consistency when we replicate?

Eventual consistency

« Eventual consistency: If no new updates to the object,
eventually all reads will return the last updated value

« Common: git, iPhone sync, Dropbox, Amazon Dynamo

« Why do people like eventual consistency?
— Fast read/write of local copy
— Disconnected operation

Issue: Conflicting writes to different copies
How to reconcile them when discovered?

Bayou: A Weakly Connected
Replicated Storage System

Meeting room calendar application as case study in
ordering and conflicts in a distributed system with poor

connectivity

« Each calendar entry = room, time, set of participants

« Want everyone to see the same set of entries, eventually
— Else users may double-book room
e Or avoid using an empty room

Paper context

Early '90s when paper was written: Dawn of PDAs,
laptops, tablets

— H/W clunky but showing clear potential

e Commercial devices

* This problem has not gone away!

— Devices might be off, not have network access
« Mainly outside the context of datacenters

— Local write/reads still really fast
* In datacenters when replicas are far away (geo-replicated)

Why not just a central server?

* Want my calendar on a disconnected mobile phone

— I.e., each user wants database replicated on their
mobile device

— No master copy

* But phone has only

— Mobile data expensive when roaming, Wi-Fi not
everywhere, all the time

— Bluetooth useful for direct contact with other
calendar users’ devices, but very short range

Swap complete databases?

Suppose two users are in Bluetooth range
— Each sends entire calendar database to other
— Possibly expend lots of network bandwidth

What if the calendars conflict, e.g., the two calendars
have concurrent meetings in a room?

— IPhone sync keeps both meetings

— Want to do better: automatic conflict resolution

Automatic conflict resolution:
Granularity of “conflicts”

« Can’tjust view the calendar database as abstract bits:
— Too little information to resolve conflicts:

1. "Both files have changed” can falsely conclude
entire databases conflict

* e.g., Mon 10am meeting in room 3 and Tuesday 11am
meeting in room 4

2. “Distinct record in each database changed” can
falsely conclude no conflict

* e.g., Mon 10—-11am meeting in room 3 Doug attending,
Mon 10-11am meeting in room 4 Doug attending, ...

Application-specific conflict resolution

* Want intelligence that knows how to resolve
conflicts

— More like users’ updates: read database, think,
change request to eliminate conflict

— Must ensure all nodes resolve conflicts in the
same way to keep replicas consistent

Application-specific update functions

» Suppose calendar update takes form:
— 10 AM meeting, Room=305, CS-240 staff”
— How would this handle conflicts?

+ Better: write is an update function for the app

— “1-hour meeting at 10 AM if room is free, else
11 AM, Room=305, CS-240 staff”

10

Potential Problem:
Permanently inconsistent replicas

* Node A asks for meeting M1 at 10 AM, else 11 AM
Node B asks for meeting M2 at 10 AM, else 11 AM

X syncs with A, then B
Y syncs with B, then A

X will put meeting M1 at 10:00
Y will put meeting M1 at 11:00

Can’t just apply update functions
when replicas sync i

Totally order the updates!

Maintain an ordered list of updates at each node

— Make sure every node holds same updates
* And applies updates in the same order

— Make sure updates are a deterministic function of
database contents

If we obey the above, “sync” is a simple merge of two
ordered lists

12

Agreeing on the update order

« Timestamp: (local timestamp T, originating node ID)

* Ordering updates a and b:
—a<bifa.T<b.T,or(a.T=b.Tanda.lD <b.ID)

13

Write log example

« (701, A): A asks for meeting M1 at 10 AM, else 11 AM

« (770, B): B asks for meeting M2 at 10 AM, else 11 AM
N~

Timestamp

* Pre-sync database state:
— Ahas M1 at 10 AM
—Bhas M2 at 10 AM 4=

 \What's the correct eventual outcome?

— The result of executing update functions in
timestamp order: M1 at 10 AM, M2 at 11 AM

Write log example: Sync problem

(701, A): A asks for meeting M1 at 10 AM, else 11 AM
(770, B): B asks for meeting M2 at 10 AM, else 11 AM

Now A and B sync with each other. Then:
— Each sorts new entries into its own log

* Ordering by timestamp
— Both now know the full set of updates

A can just run B’s update function
But B has already run B’s operation, too soon!

15

Solution: Roll back and replay

B needsto the DB, and re-run both ops
In the correct order

» Bayou User Interface: Displayed meeting room
calendar entries are

— B’s user saw M2 at 10 AM, then it moved to 11 AM

Big point: The log at each node holds the
truth; the DB is just an optimization

Does update order respect causality?

(701, A): A asks for meeting M1 at 10 AM, else 11 AM
(700, B): Delete update (701, A)

— Possible if B’s clock is slow, and using real-time
timestamps

Result: delete will be ordered before add
— (Delete never has an effect.)

Q: How can we assign timestamp to respect causality?

17

Lamport clocks respect causality

« Want event timestamps so that if a node observes E1
then generates E2, then TS(E1) < TS(E2)

« Use Lamport clocks!
—IfE1 2> E2then TS(E1) < TS(E2)

18

Lamport clocks respect causality

« (701, A): A asks for meeting M1 at 10 AM, else 11 AM
« (700 B) Delete update (701 A}
« (706, B): Delete update (701, A)

« With Lamport clocks:
— When A sends (701, A), it includes its clock, T (> 701)
— When B receives (701, A), it updates its clockto T' > T
— When B creates the delete, it timestamps it with clock T" > T°
- T'>T>T>701
« Eg., T"is 706

 Q: Whatif A and B are concurrent?

Timestamps for write ordering: Limitations

* Never know whether some write from “the past”
may yet reach your node...

« S0 all entries in log must be tentative forever

* And you must store entire log forever

Want to commit a tentative entry,
so we can trim logs and have meetings

20

Fully decentralized commit

« Strawman proposal: Update (10, A) is committed
when all nodes havese \pdates with TS < 10

— S0 (10, A) is committed

* Why doesn’t Bayou do this?

— A server that remains disconnected could prevent
writes from committing

« SO0 many writes may be rolled back on re-connect

21

How Bayou commits writes

* Bayou uses a primary commit scheme
— One designated node (the primary) commits updates

* Primary marks each write it receives with a permanent
CSN (commit sequence number)

— That write is committed
— Complete timestamp = (CSN, local TS, node-id)

Advantage: Can pick a primary server
close to locus of update activity

22

How Bayou commits writes (2)

* Nodes exchange CSNs when they sync with each other

« CSNs define a total order for committed writes
— All nodes eventually agree on the total order
— Tentative writes come after all committed writes

23

Committed vs. tentative writes

Suppose a node has seen every CSN up to a write, as
guaranteed by propagation protocol

— Can then show user the write has committed
» Mark calendar entry “Confirmed”

Slow/disconnected node cannot prevent commits!
— Primary replica allocates CSNs

24

Tentative writes

* What about tentative writes, though—how do they
behave, as seen by users?

« Two nodes may disagree on meaning of tentative
writes

— Even if those two nodes have synced with each other!

— Only CSNs from primary replica can resolve these
disagreements permanently

25

Scenario 1: nodes that have synced
disagree

Time

A B C

Scenario 2: tentative order changes after
commit

Time A B C m
W (-,10, A)
W (-,20, B)
sSync
Y syﬁz]

) gync

’ sync]
’ sync]

Logs ? ? ? ?

Example: Disagreement on tentative writes

Time A B C
) sync W (0, C)
W (1, B)
Y W (2, A)

28

Example: Disagreement on tentative writes

. Syne | W (0, C)
W (1, B)
' W (2, A)) sync
Logs (1, B) (1, B) (0, C)

29

Example: Disagreement on tentative writes

Time A B C
) sync W (0, C)
W (1, B)
v W (2, A) . sync R
Logs (1, B) (0, C) (0, C)
(2, A) (1, B) (1, B)

30

Example: Disagreement on tentative writes

Time A B C
___sync W (0, C)
W (1, B)
v W (2, A) ___sync
Logs (1, B) (0, C) (0, C)
(2, A) (1, B) (1, B)

31

Tentative order # commit order

W (-,10, A)
W (-,20, B)
Logs | (-,10, A) (20, B) (-,20, B)
(-20, B)

(CSN, local TS, node-id)

Tentative order # commit order

Time A B C m
Logs | (6,10, A) (5,20, B) [=>| (5,20, B) (5,20, B)
(5,20, B) =| (6,10, A) (6,10, A)

(CSN, local TS, node-id)

Trimming the log

* \When nodes receive new CSNs, can discard all
committed log entries seen up to that point

— Update protocol > CSNs received in order

« Keep copy of whole database as of highest CSN

* Result: No need to keep years of log data

34

Primary commit order constraint

« Suppose a user creates meeting, then decides to
delete or change it

— What CSN order must these ops have?
* Create first, then delete or modify

* Must be true in every node’s view of tentative log
entries, too

* Rule: Primary’s total write order must preserve
causal order of writes

— Q: How?

35

Primary preserves causal order

Rule: Primary’s total write order must preserve
causal order of writes

 How?
— Nodes sync full logs

 If A > Bthen Aisin all logs before B

— Primary orders newly synced writes in tentative
order

* Primary will commit A and then commit B

36

Let’s step back

* |s eventual consistency a useful idea?

* Yes: people want fast writes to local copies
IPhone sync, Dropbox, Dynamo, ...

* Are update conflicts a real problem?

* Yes—all systems have some more or less awkward
solution

37

Is Bayou’s complexity warranted?

update functions, tentative ops, (vector clocks), ...

Only critical if you want peer-to-peer sync

— I.e. both disconnected operation and ad-hoc
connectivity

Only tolerable if humans are main consumers of data
— Otherwise you can sync through a central server
— Or read locally but send updates through a master

38

What are Bayou’s take-away ideas?

1. Eventual consistency, eventually if updates
stop, all replicas are the same

2. Update functions for automatic application-
driven conflict resolution

3. Ordered update log is the real truth, not the DB

4. Application of Lamport clocks for causal
consistency

39

Next topic:

Peer to Peer Systems and
Distributed Hash Tables

40

