Scaling Out Key-Value Storage

alllauc Ellal) deals

King Abdullah University of
Science and Technology

(

CS 240: Computing Systems and Concurrency
Lecture 8

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.
Selected content adapted from B. Karp, R. Morris.

Horizontal or vertical scalability?

Vertical Scaling Horizontal Scaling

Horizontal scaling is challenging

* Probability of any failure in given period = 1-(1-p)”
— p = probability a machine fails in given period
— n = number of machines

« For 50K machines, each with 99.99966% available
— 16% of the time, data center experiences failures

 For 100K machines, failures 30% of the timel

Main challenge: Coping with constant failures

Today

1. Techniques for partitioning data
— Metrics for success

2. Case study: Amazon Dynamo key-value store

Scaling out: Placing

* You have key-value pairs to be partitioned across nodes
based on an id

* Problem 1: Data placement
— On which node(s) to place each key-value pair?
« Maintain mapping from data object to node(s)
 Evenly distribute data/load

Scaling out: Partitioning

* Problem 2: Partition management
— Including how to recover from node failure
* e.g., bringing another node into partition group
— Changes in system size, i.e. nodes joining/leaving
— Heterogeneous nodes

» Centralized: Cluster manager
* Decentralized: Deterministic hashing and algorithms

Modulo hashing

« Consider problem of data partition:
— Given object id X, choose one of k servers to use

« Suppose instead we use modulo hashing:
— Place X on server i = hash(X) mod k

« What happens if a server fails or joins (k € k=*=1)?
— or different clients have different estimate of k?

Problem for modulo hashing:
Changing number of servers

h(x) =x+1 (mod 4)
Add one machine: h(x) =x + 1 (mod 5)

All entries get remapped to new nodes!
- Need to move objects over the network

5 7 10 11 27 29 36 38 40
Object serial number

Consistent hashing

— Assign n tokens to random points on
mod 2k circle; hash key size = k

— Hash object to random circle position

— Put object in closest clockwise bucke
— successor (key) - bucket

t12

* Desired features —
— Balance: No bucket has “too many” objects;

E(bucket size)=1/n

— Smoothness: Addition/removal of token
minimizes object movements for other buckets

Consistent hashing’s load balancing problem

« Each node owns 1/n of the ID space in expectation

— Hot keys => some buckets have higher request rg\te

14

» If a node fails, its successor takes over bucket g
— Smoothness goal v': Only localized shift, not O(n)

— But now successor owns two buckets: 2/n of key space
* The failure has upset the load balance

10

Virtual nodes

 ldea: Each physical node implements v virtual nodes
— Each physical node maintains v > 1 token ids
« Each token id corresponds to a virtual node

« Each physical node can have a different v based on
strength of node (heterogeneity)

« Each virtual node owns an expected 1/(vn) of ID space
« Upon a physical node’s failure, v virtual nodes falil

— Their successors take over 1/(vn) more
» Expected to be distributed across physical nodes

11

Virtual nodes: Example

4 Physical Nodes
V=2
14

* Result: Better load balance with larger v

12

Today

1. Techniques for partitioning data

2. Case study: the Amazon Dynamo key-
value store

13

Dynamo: The P2P context

« Chord and DHash intended for wide-area P2P systems
— Individual nodes at Internet’s edge, file sharing

» Central challenges: low-latency key lookup with high
availability

— Trades off consistency for availability and latency

* Techniques:
— Consistent hashing to map keys to nodes
— Vector clocks for conflict resolution
— Gossip for node membership
— Replication at successors for availability under failure

14

Amazon’s workload (in 2007)

‘«_Tens of thousands of servers in globally-distributed
elata centers

fex .I_'Deak Ioad: Tens of millions of customers

o 'Tiered service-oriented architecture

"~ Stateless web page rendering servers, -atop ¢
- Stateless aggregator servers, atop
— Stateful data stores (e.g. Dynamo)
- ¢ put(.), get(): values “usually less than 1 MB" .

15

How does Amazon use Dynamo?

*«_ Shopping:cart;

; 'Session ihfo
P —Maybe recently visited products” efc.?

.. Product Ilst .
-.— Mostly read-only, replication for high read throughput

.
-

' .
/-

16

Dynamo requirements

- Bighly available writes despite failures

. .= Despite-disks failing, network routes flapping, “data
. '.’ -centers-destroyed by tornadoes” :
- . "~ Always respond quickly, even during failures -
s repllcatlon

o :Low requést-response latency: focus on 99.9% SIi.A

" _“Incrementally _ﬁscalable as servers grow to workload
— Adding i“nodes” should be seamless

Comprehen3|ble conflict resolution :
— High avallablllty In above sense implies conflicts :

17

Design questions

How is data placed and replicated?

How are requests routed and handled in a replicated
system?

How to cope with temporary and permanent node
failures?

18

Dynamo’s system interface

» Basic interface is a key-value store
— get(k) and put(k, v)
— Keys and values opaque to Dynamo

« get(key) = value, context
— Returns one value or multiple conflicting values
— Context describes version(s) of value(s)

» put(key, context, value) - “OK”

— Context indicates which versions this version
supersedes or merges

Dynamo’s techniques

 Place replicated data on nodes with consistent hashing

* Maintain consistency of replicated data with vector clocks

— Eventual consistency for replicated data: prioritize
success and low latency of writes over reads

* And availability over consistency (unlike DBs)

 Efficiently synchronize replicas using Merkle trees

Key trade-offs: Response time vs.
consistency vs. durability

20

Data placement

requests go to me

put(K....), get(K)]

Coordinator node
/ % Nodes B, C
\ ¢ and D store
. keysin

range (A,B)

\) i including
\
@@

K.

Each data item 1s replicated at NV virtual nodes (e.g., N = 3)

21

Data replication

Much like in Chord: a key-value pair - key's N
successors (preference lisft)

— Coordinator receives a put for some key

— Coordinator then replicates data onto nodes in the
key’s preference list

Writes to more than just N successors in case of
failure

For robustness, the preference list skips tokens to
ensure distinct physical nodes

22

Gossip and “lookup”

Gossip: Once per second, each node contacts a
randomly chosen other node

— They exchange their lists of known nodes
(including virtual node IDs)

Assumes all nodes will come back eventually, doesn't
repartition

Each node learns which others handle all key ranges

— Result: All nodes can send directly to any key’s
coordinator (“zero-hop DHT”)

* Reduces variability in response times

23

Partitions force a choice between
availability and consistency

« Suppose three replicas are partitioned into two and one

AR

* If one replica fixed as master, no client in other partition can write

 Traditional distributed databases emphasize consistency
over availability when there are partitions

Alternative: Eventual consistency

* Dynamo emphasizes availability over consistency when there
are partitions

 Tell client write complete when only some replicas have stored it
* Propagate to other replicas in background
* Allows writes in both partitions...but risks:

— Returning stale data
— Write conflicts when partition heals:

E© DD

put (k,v,) put (k,v;)

?2@%S$!1!
25

Mechanism: Sloppy quorums

If no failure, reap consistency benefits of single master
— Else sacrifice consistency to allow progress

Dynamo tries to store all values put() under a key on
first N live nodes of coordinator’s preference list

BUT to speed up get() and put():

— Coordinator returns “success” for put when W < N
replicas have completed write

— Coordinator returns “success” for get when R <N
replicas have completed read

26

Sloppy quorums: Hinted handoff

« Suppose coordinator doesn’t receive W replies when
replicating a put()

— Could return failure, but remember goal of high
availability for writes...

 Hinted handoff: Coordinator tries next successors
in preference list (beyond first N) if necessary

— Indicates the intended replica node to recipient

— Recipient will periodically try to forward to the
intended replica node

27

Hinted handoff: Example

« Suppose C fails
— Node E is in preference list

* Needs to receive replica of @
the data @

— Hinted Handoff: replica at E/
points to node C; E @
periodically forwards to C

« When C comes back

— E forwards the replicated data
back to C

Key K

‘ Coordinator
\ % Nodes B, c
\ i andD t

28

Wide-area replication

« Lastq], § 4.6: Preference lists always contain nodes
from more than one data center

— Consequence: Data likely to survive failure of
entire data center

* Blocking on writes to a remote data center would
Incur unacceptably high latency

— Compromise: W < N, eventual consistency
— Better durability & latency but worse consistency

29

Sloppy quorums and get()s

« Suppose coordinator when
processing a get()

— Penultimate 4], § 4.5: “R is the min. number of nodes
that must participate in a successful read operation.”

» Sounds like these get()s fail

 Why not return whatever data was found, though?
— As we will see, consistency not guaranteed anyway. ..

Sloppy quorums and freshness

Common case given in paper: N =3, R=W =2
— With these values, do sloppy quorums guarantee
a get() sees all prior put()s?

If no failures, yes:

— Two writers saw each put()

— Two readers responded to each get()

— Write and read quorums must overlap!

31

Sloppy quorums and freshness

Common case given in paper: N =3, R=W =2
— With these values, do sloppy quorums guarantee
a get() sees all prior put()s?

With node failures, no:
— Two nodes in preference list go down
* put() replicated outside preference list

— Two nodes in preference list come back up
* get() occurs before they receive prior put()

32

Conflicts

« Suppose N =3, W=R =2, nodes are named A, B, C
— 1stput(k, ...) completes on A and B
— 2" put(k, ...) completes on B and C
— Now get(k) arrives, completes firstat A and C

« Conflicting results from A and C
— Each has seen a different put(k, ...)

* Dynamo returns both results; what does client do now?

33

Conflicts vs. applications

Shopping cart:
— Could take union of two shopping carts

— What if second put() was result of user deleting item
from cart stored in first put()?

* Result: “resurrection” of deleted item

Can we do better? Can Dynamo resolve cases when
multiple values are found?

— Sometimes. If it can’t, application must do so.

34

Version vectors (vector clocks)

List of (coordinator node, counter) pairs
-e.g, [(A, 1), (B, 3), ...]

* Dynamo stores a version vector with each stored key-
value pair

 ldea: track “ancestor-descendant” relationship
between different versions of data stored under the

same key k

Version vectors: Dynamo’s mechanism

* Rule: If vector clock comparison of v1 <v2, then the first is
an ancestor of the second — Dynamo can forget v1

« Each time a put() occurs, Dynamo increments the counter
in the V.V. for the coordinator node

« Each time a get() occurs, Dynamo returns the V.V. for the
value(s) returned (in the “context”)

— Then users must supply that context to put()s that
modify the same key

36

Version vectors (auto-resolving case)

put handled
by node A

v
vl [(A,1)]

put handled
by node C

v2 [(A,1), (C,1)]

Version vectors (app-resolving case)

put handled
by node A

vl [(A,)]

put handled put handled
by node B by node C

v2 [(A,1), (B,1)] v3 [(A,1), (C,1)]

Client reads v2. v3 ot ;v2 || v3, so a client must perform
1emL TEas va, Vo, CONTEXL | semantic reconciliation

[(A,D), (B,1), (C,1)]
v4 [(A,2), (B, 1) (C,1)]

Trimming version vectors

« Many nodes may process a series of put()s to same key
— Version vectors may get long — do they grow forever?

No, there is a clock truncation scheme
— Dynamo stores time of modification with each V.V. entry

— When V.V. > 10 nodes long, V.V. drops the timestamp of
the node that least recently processed that key

39

Impact of deleting a VV entry?

put handled
by node A

v
vl [(A,1)]

put handled
by node C

v2 [tAshs (C1)]

Concurrent writes

« What if two clients concurrently write w/o failure?
— e.g. add different items to same cart at same time
— Each does get-modify-put
— They both see the same initial version
» And they both send put() to same coordinator

 Will coordinator create two versions with conflicting VVs?
— We want that outcome, otherwise one was thrown away

— Paper doesn't say, but coordinator could detect problem
via put() context

41

Removing threats to durability

* Hinted handoff node crashes before it can replicate
data to node in preference list

— Need another way to ensure that each key-value
pair is replicated N times

* Mechanism: replica synchronization
— Nodes nearby on ring periodically gossip
» Compare the (k, v) pairs they hold
« Copy any missing keys the other has

r How to compare and copy replica
i state quickly and efficiently?

42

Efficient synchronization with Merkle trees

* Merkle trees hierarchically summarize the key-value
pairs a node holds

* One Merkle tree for each virtual node key range
— Leaf node = hash of one key’s value
— Internal node = hash of concatenation of children

« Compare roots; if match, values match

— If they don’t match, compare children
* [terate this process down the tree

43

Merkle tree reconciliation

* B is missing orange key; A is missing green one

« Exchange and compare hash nodes from root
downwards, pruning when hashes match

A’s values: B’s values:
[O 2128 [O 2128)

[O 2127: I‘ 2127 2128 [O 2127i ; 2127 2128

| Finds differing keys quickly and with
minimum information exchange i

How useful is it to vary N, R, W?

NRWBehavior

3 2 2 Parameters from paper:
Good durability, good R/W latency

45

How useful is it to vary N, R, W?

NRWBehavior

3 2 2

Parameters from paper:
Good durability, good R/W latency

Slow reads, weak durability, fast writes
Slow writes, strong durability, fast reads
More likely that reads see all prior writes?
Read quorum may not overlap write quorum

46

Dynamo: Take-away ideas

Consistent hashing broadly useful for replication—not only
In P2P systems

Extreme emphasis on availability and low latency,
unusually, at the cost of some inconsistency

Eventual consistency lets writes and reads return quickly,
even when partitions and failures

Version vectors allow some conflicts to be resolved
automatically; others left to application

47

Next topic:

Replicated State Machines
via Primary Backup

48

