Replication State Machines via
Primary-Backup

alllauc Ellall aealy

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 9

Marco Canini

Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

From eventual to strong consistency

« Eventual consistency
— Multi-master: Any node can accept operation
— Asynchronously, nodes synchronize state

» Eventual consistency inappropriate for many applications
— Imagine eventually consistent file system

— Clients can read/write to different masters, see different
versions of files

» Stronger consistency makes applications easier to write

Plan

1. Introduction to Primary-Backup replication

2. Case study: VMWare's fault-tolerant virtual
machine

Primary-Backup Replication

 Mechanism: Replicate and
Client C ‘% separate servers

l Goal #1: Reliable despite

. —~_ Individual server failures
Primary P \D

 Goal #2: Semantics of a
l single server

Backup B k‘g

Primary-Backup Replication

« Nominate one replica
Client C % :
» Other replicas are
— Only one primary at a time

Primary P NU » Clients send all operations to
current primary

l * Primary orders clients’ operations

Backup B NU

Need to keep clients, primary, and backup in sync:
who is primary and who is backup

State machine replication

Insight: A replica is essentially a state machine
— E.g., set of (key, value) pairs is state
— Operations transition between states

Each operation executed on all replicas, or none at all
— I.e., we need distributed all-or-nothing atomicity

Key assumption: Operations are deterministic

If op is deterministic, replicas will end in same state

More reading: ACM Computing Surveys, Vol. 22, No. 4, December 1990 (pdf)

Implementing Fault-Tolerant Services Using the State Machine

Approach: A Tutorial

FRED B. SCHNEIDER

Department of Computer Science, Cornell University, Ithaca, New York 14853

The state machine approach is a general method for implementing fault-tolerant services
in distributed systems. This paper reviews the approach and describes protocols for two
different failure models—Byzantine and fail stop. System reconfiguration techniques for
removing faulty components and integrating repaired components are also discussed.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]):
Distributed Systems—network operating systems; D.2.10 [Software Engineering]:
Design—methodologies; D.4.5 [Operating Systems]: Reliability—fault tolerance; D.4.7
[Operating Systems]: Organization and Design—interactive systems, real-time systems

General Terms: Algorithms, Design, Reliability

Additional Key Words and Phrases: Client-server, distributed services, state machine

approach

INTRODUCTION

Distributed software is often structured in
terms of clients and services. Each service
comprises one or more servers and exports
operations that clients invoke by making
requests. Although using a single, central-
ized, server is the simplest way to imple-

service by replicating servers and coordi-
nating client interactions with server rep-
licas." The approach also provides a
framework for understanding and design-
ing replication management protocols.
Many protocols that involve replication of
data or software—Dbe it for masking failures
or simbplv to facilitate cooneration without

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf

State machines

» Set of state variables + Sequence of operations
* An operation

— Reads its read set values

—Writes to its write set values
* A deterministic operation

—Produces deterministic wsvs and outputs on
given rsv

A deterministic state machine

—Reads a fixed sequence of deterministic
operations

Replica coordination

- Agreement: Every non-faulty state machine
receives every operation

* Order: Every non-faulty state machine

processes the operations it receives in the
same order

Primary-Backup Replication

Client C %

put(x,1)l 1. Primary gets operations
Primary P \D

put(x,1)l

Backup B L‘U

Primary orders ops into log

Replicates log of ops to backup

> W N

Backup exec’s ops or writes to log

10

Primary-Backup Replication

Client C % Asynchronous Replication

put(x,1)lT ack 1. Primary gets operations

Primary P L‘_\U

2
l 3. Primary orders ops into log
put(x,1)
4
3

Backup B L‘U

. Primary exec’s ops

. Replicates log of ops to backup

. Backup exec’s ops or writes to log

11

Primary-Backup Replication

Client C %

put(x,1)lT ack 1.

. Primary orders ops into log

Primary P L{U

Backup B L‘U

2

lT 3.
put(x,1) ack

4,

S

Synchronous Replication

Primary gets operations

Replicates log of ops to backup

Backup exec’s op or writes to log

. Primary gets ack, execs ops

* On primary failure, a backup is promoted to new primary

12

Hot vs. Cold backups

“Backup exec’s op or writes to log”

Hot Backups execute operations from the
primary as soon as they receive it

» Cold Backups log operations received from
primary, and execute them only if primary fails

Why does this work?
Synchronous Replication

m m m Ej m m - Clients
shl
(Logging/ﬁdg&Qa*imp)
I\ﬁule achine M}ule Madhine
S W $ w
mgﬁ Log ﬁ
add | jmp mov| s) add | jmp mov| s)

Backup Primary

Servers

* Replicated log => replicated state machine

— All servers execute same commands in same order

14

Why does this work?
Synchronous Replication

CEEEEEE Clients
shl
(Logging Logging Loglging S\ate)
Module achine Module achine oVlule Madhine

D DD DD
Log\ i‘ Log\ i‘ Log i‘
add|jmp|/mov| s JAS add|jmp|/mov| s JAS add|jmp|/mov| s)

Backup Backup Primary

Servers

* Replicated log => replicated state machine

— All servers execute same commands in same order

15

Need determinism? Make it so!

* Operations are deterministic
— No events with ordering based on local clock
« Convert timer, network, user into logged events

— Nothing using random inputs

» Execution order of ops is identical

— e.q. replicated state machines (RSMs) is single threaded

Example: Make random() deterministic

Almost all module functions depend on the basic function random(), Which generates a
random float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne
Twister as the core generator. It produces 53-bit precision floats and has a period of
2**19937-1. The underlying implementation in C is both fast and threadsafe. The
Mersenne Twister is one of the most extensively tested random number generators in
existence. However, being completely deterministic, it is not suitable for all purposes, and
is completely unsuitable for cryptographic purposes.

random. seed(a=None)
Initialize internal state of the random number generator.

None Or Nno argument seeds from current time or from an operating system specific
randomness source if available (see the os.urandom() function for details on
availability).

random. getstate()

Return an object capturing the current internal state of the generator. This object can
be passed to setstate() to restore the state.

17

Example: Make random() deterministic

* Primary:
— Initiates PRNG with OS-supplied randomness, gets initial seed
— Sends initial seed to to backup

« Backup
— Initiates PRNG with seed from primary

random. seed(a=None)
Initialize internal state of the random number generator.

None Or Nno argument seeds from current time or from an operating system specific
randomness source if available (see the os.urandom() function for details on

availability).

random. getstate()
Return an object capturing the current internal state of the generator. This object can

be passed to setstate() to restore the state.

18

Primary-Backup: Summary

First step in our goal of making stateful replicas
fault-tolerant

Allows replicas to provide continuous service
despite persistent net and machine failures

Finds repeated application in practical
systems

19

Case study

he design of a practical system for
fault-tolerant virtual machines

D. Scales, M. Nelson, G. Venkitachalam, VMWare
SIGOPS Operating Systems Review 44(4), Dec. 2010 ()

20

http://dl.acm.org/ft_gateway.cfm?id=1899932

Where should RSM be implemented?

In hardware
— Sensitive to architecture changes

At the OS level

— State transition are hard to track and
coordinate

At the application level

— Requires sophisticated application
programmers

VMware vSphere Fault Tolerance (VM-FT)

Goals:
1. Replication of the whole virtual machine
2. Completely transparent to apps and clients

3. High availability for any existing software

Overview

» Two virtual machines (primary,
backup) on different bare metal

* Logging channel runs over network ﬁ

« Shared disk via fiber channel

\Shared Disk/

23

Virtual Machine 1/O

. VM inputs
— Incoming network packets
— Disk reads
— Keyboard and mouse events
— Clock timer interrupt events

VM outputs
— Qutgoing network packets
— Disk writes

Overview

Primary Backup
VM VM
* Primary sends inputs to backup
o5 o5
« Backup outputs dropped -
channe

» Primary-backup heartbeats 2| =

— If primary fails, backup takes over
Shared Disk

L ==

25

VM-FT: Challenges

1. Making the backup an exact replica of primary
2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)

Log-based VM replication

« Step 1: Hypervisor at primary logs the causes of
non-determinism

1. Log results of input events
 Including current program counter value for each

2. Log results of non-deterministic instructions
* e.g. log result of timestamp counter read

27

Log-based VM replication

« Step 2: Primary hypervisor sends log entries to
backup hypervisor

« Backup hypervisor replays the log entries

— Stops backup VM at next input event or non-
deterministic instruction

* Delivers same input as primary

* Delivers same non-deterministic instruction
result as primary

28

VM-FT Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server
— FT Protocol

3. Avoiding two primaries (Split Brain)

29

Primary to backup failover

* When backup takes over, non-determinism makes
it execute differently than primary would have

— This is okay!

* Output requirement

— When backup takes over, execution is consistent
with outputs the primary has already sent

30

The problem of inconsistency

a
Input ° Output

Primary \ H—>
Backup

Prlmary fails

31

VM-FT protocol

* Primary logs each output operation
* Delays sending output until Backup acknowledges it

* But does not need to delay execution

\S
Input X\ fo
\\ O\)\Q A P (-\«\a‘
Primary ’
Backup —

A
Duplicate output

32

“If a tree falls in forest” metaphor:

VM-FT proto« If event happens and nobody sees it yet,
| did it really happen?

* Primary logs each output operation
* Delays sending output until Backup acknowledges it
* But does not need to delay execution

\S
Input X\ fo
\\ O\)\Q A P (-\((\6(
Primary ’
Backup .

A
Duplicate output

Can restart execution at an output event

VM-FT: Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
— Logging channel may break

34

Detecting and responding to failures

* Primary and backup each run UDP heartbeats,
monitor logging traffic from their peer

» Before “going live” (backup) or finding new backup
(primary), execute an atomic test-and-set on a
variable in shared storage

* If the replica finds variable already set, it aborts

VM-FT: Conclusion

 Challenging application of primary-backup replication

* Design for correctness and consistency of replicated
VM outputs despite failures

 Performance results show generally high
performance, low logging bandwidth overhead

36

Primary-Backup: Take-away ideas

* All replicas receive and process the same sequence of
(deterministic) operations

— Clients send all operations to current primary
— Primary orders clients’ ops into a log

— Primary replicates the log to backup

— Backup executes ops

— Async vs Sync replication: when the primary executes

i- Need to keep clients, primary, and backup in
' sync: who is primary and who is backup

Next topic:
Two-Phase Commit

38

