Concurrency in Go

CS 240 - Fall 2019
Rec. 2

Housekeeping

Name’s Arnaud Dethise, PhD student. Nice to meet you.

Second TA for this course
Will also have office hours (TBA)

Housekeeping

* Assignment 1 deadline is coming soon.
* Should have read and started the assignment.
* |If progressing correctly, should have working mapF ()

Concurrency in Go
Part 1 - MapReduce

CS 240 - Fall 2019
Rec. 2

Map Reduce

Wikipedia:

“MapReduce is a programming model and an
associated implementation for processing and generating
big data sets with a parallel, distributed algorithm on a
cluster.”

In other words, a general and scalable solution to deal
with big data computation on multiple machines.

Abstract Map Reduce

map(key, value) -> list(<k’, v’>)
* Apply function to (key, value) pair ~ Splitand
» Outputs set of intermediate pairs Sieliioicleale

reduce(key, list<value>) -> <k’, v’>

* Applies aggregation function to values

Aggregate and
* Qutputs result BETEE

compute
results

Word Count — The Hello World of Map Reduce

Bus 2
Bus1 | Bus 3
Bus 1
Bus Car Train » Carl
Train 1 Carl T cars Bus 3
ar
Bus Car Train Carl Claji)
Train Plane Car Train 1 Train
Train Plane Car » Plane 1 .
Bus Bus Plane Car 1 Trainl | 5/ Train2 Plane 2
Train 1
Bus 2
Bus Bus Plane Plane 1 Plane1 | 7 Plane2
Plane 1
Splitting Mapping Intermediate Reducing Combining

Splitting
[doMap ()] [doReduce ()]

A Motivating Problem for Map Reduce

“Find me the closest Starbucks to KAUST.
Actually, I’'ll give you a place and something to look for,
and you find me the closest one.
Here’s a 1 TB text file ... good luck”

GPS Coordinates Site Name
(22.3, 39.1] Tim Hortons
22.2, 39.1] KAUST Library :l' In KAUST

(35,7, 139.7] Starbucks + In Tokyo, Japan

A Motivating Problem for Map Reduce

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons @ @ @
[22.2, 39.1] KAUST Library 00 o o2
[35.7, 139.7] Starbucks

1_0.txt 1 1.txt

Map to
grids

Reduce to
single files

Split the File and Map Each Chunk Independently (1/2)

Mapping Nodes i

GPS Coordinates Site Name I
[22.3, 39.1] Tim Hortons //‘ Mapper

[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks

[42.0, 69.0] Chanak Train Stop
[22.2, 39.2] Burger King

Split the File and Map Each Chunk Independently (2/2)

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons
[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks
[42.0, 69.0] Chanak Train
[22.2, 39.2] Burger King

KEY <grid>: VALUE <locations and name>

:_I\Za?)p;i n_g_N_oae_s 1|
| |
|

> (1,2)

[(1,2):

| | (1,2):
Mapper [%

(1,3):
(1,3):

[22.3,
[22.2,

[35.7,

[42.0,

. [22.2,

(1,2): ...

39.1] Tim Hortons
39.1] KAUST Library

139.7] Starbucks

69.0] Chanak Train

39.2] Burger King

(KEY) can appear in multiple mappers

Collect the Mapper Results and Reduce to Single Files (1/2)

————————— 1
I

: Reducing Nodes

[
(1,2): [22.3, 39.1] Tim Hortons |

(1,2): [22.2, 39.1] KAUST Library I

(1,2): tié.z, 39.2] Burger King l
(1,2): ... l (1 ,3)a (2,4)

[

[

(1,2): ... Reducer | |,
: [35.7, 139.7] Starbucks I (1 2) I

| ’ |

: |

‘ |

; [

(1,3): [42.0, 69.0] Chanak Train I I
(1,3): Reducer | |
[

[

Collect the Mapper Results and Reduce to Single Files (2/2)

KEY <grid>: [
VALUES <locations and names>,

.o]
- s = 1
Reducing Nodes1 (1,2): [
[I [22.3, 39.1] Tim Hortons,
(1,2): [22.3, 39.1] Tim Hortons I I [22.2, 39.1] KAUST Library,
(1,2): [22.2, 39.1] KAUST Library | [22.2, 39.2] Burger King
(1,2): ... Reducer : o]
: [35.7, 139.7] Starbucks I (1.2) \]
: I ’ :
; !
I 0
: I
: [42.0, 69.0] Chanak Train /I \ [35i7’ 15807]] SEIHINEAS,
(1 2)f [22 2, 39.2] Burger King / : Reducer I
,2): .2, 39. i |
(1,2): ... I (1,3), 2.4) I [42.0, 69.0] Chanak Train Stop,
I

Word Count — The Hello World of Map Reduce

Bus 2
-------------------- BUS 1 \A Bus 3
Bus 1 ,
Carl
Train 1 Car1l - car2 Bus 3
____________________ ar
Bus Car Train ' e Carl c:i 2
Train Plane Car Train 1 Train 2
» Plane 1 -
Bus Bus Plane Car 1 Trainl | ' Train2 Plane 2
Train 1
| Bus?2
Plane 1 |\§- Planel |] Plane 2
-------------------- i Plane/

Task is automatically
Intermediate distributed across five

Splitting Mapping Splitting different nodes

Hadoop: An open-source implementation

W Apache Hadoop is the most popular open-source
ﬁ:@ _Za a/a/0o . :
YA h [L—Z/—] implementation of MapReduce

Runs on top of a distributed filesystem (HDFS)

Try their MapReduce tutorial:
https://hadoop.apache.org/docs/r1.2.1/mapred tutorial.html

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

TXT Q

data.txt

How Hadoop Does it

RN N IS S S S S S S S - .- I

Mapping Nodes

Reducing Nodes

Reducer

[

[

| Mapper

[

[

: TXT Q TXT o
I 1_2.txt 2_4.txt

[

[

! Mapper

[

[

: TXT 0 TXT O
I 1_3.txt 1_2.txt

[

RN N IS S S S S S S S - .- I

Concurrency in Go
Part 2 - Concurrency

CS 240 - Fall 2019
Rec. 2

What is Concurrency?

It’s like parallel that’s not in parallel

What is Parallelism?

Time
Sequential
'F(X) I 4 'F(X) N
f(Y) £(Y) =
Parallel
-F(X)] -F(X) = A
f(Y) o f(Y) = B

What is Concurrency?

Time
Sequential
'F(X) L . 'F(X) B
f(Y) f(Y) =
Concurrent
f(X) f(X) =

B
£(Y) £(Y)

Concurrency Could be Parallel but not Always

£(X)
£(Y)

£(X)
£(Y)
£(2)
£ (W)

Concurrent but not Parallel

Concurrent and Parallel

Time

£(X)
£(Y)

£(X)
£(Y)
£(2)
£ (W)

W > W >

Parallel is Always Concurrent

Parallel but not Concurrent? Time
£(X) e f(X) = A
£(Y) e f(Y) = B

Nope ... still concurrent

Parallel — Concurrent
Concurrent + Parallel

Why Care about Concurrency

If something concurrent but not parallel takes as much
time as something sequential, why make it concurrent?

>

_ Time
'F(X) & 'F(X) = A
f(Y) f(Y) = B
£0X) Concurrent FOX) = A
f(Y) f(Y) = B

Concurrency is a Design Pattern

“Concurrency is about dealing with lots of things at once.
Parallelism is about doing lots of things at once.”

- Rob Pike

"Concurrency is not Parallelism” by Rob Pike : https://talks.golang.org/2012/waza.slide#1

Distributed Systems are Unpredictable

Servers need to react to:
 QOthers servers
 (Crashes
« Users

v Time

Making Bank Deposits Concurrent (1/5)

| Add($10)

[

~.

Server

Database

v Time

Making Bank Deposits Concurrent (2/5)

| Add($10)

~.

[

)

Server

Read
x=0

read
>

$0

Database

v Time

Making Bank Deposits Concurrent (3/5)

| Add($10)

[

~.

Server

Read
Xx=0
X +=10
Write x

read
>

$0

$10

Database

10

v Time

Making Bank Deposits Concurrent (4/5)

| Add($10)

[

~.

Server

Read
x=0

X +=10
Write x

read
>

$0

$10

Database

10

v Time

Making Bank Deposits Concurrent (5/5)

| Add($10)
[] Server Database

)

Read read R
=0 k $0
X +=10
Write x $10 > 20

v Time

Concurrent Bank Deposits! Yay? (1/5)

| Add$10)

[

D~

Server

Database

v Time

Concurrent Bank Deposits! Yay? (2/5)

| Add($10)

~.

[

)

Server

Read
x=0

read
>

$0

Database

v Time

Concurrent Bank Deposits! Yay? (3/5)

| Add($10)

~.

[

)

Server

Read
x=0

read
>

$0

Database

v Time

Concurrent Bank Deposits! Yay? (4/5)

| Add$10)

[

D~

)

Server

Read
x=0

X +=10
Write x

read
>

$0

$10

Database

10

v Time

Concurrent Bank Deposits! Yay? (5/5)

| Add($10)

[

~.

)

Server

Read
x=0

X +=10
Write x

read

$0

$10

Database

10

Concurrency Needs to be Synchronized

Locks - limit access using shared memory
Channels - pass information using a queue

Visualize Everything We’ve Learned

And also see many different methods of
achieving synchronization:
http://divan.qgithub.io/posts/go_concurrency_visualize/

http://divan.github.io/posts/go_concurrency_visualize/

