
Concurrency in Go
CS 240 – Fall 2019

Rec. 2

Housekeeping

Name’s Arnaud Dethise, PhD student. Nice to meet you.

Second TA for this course
Will also have office hours (TBA)

Housekeeping

• Assignment 1 deadline is coming soon.
• Should have read and started the assignment.
• If progressing correctly, should have working mapF()

Concurrency in Go
Part 1 - MapReduce

CS 240 – Fall 2019
Rec. 2

Map Reduce

Wikipedia:
“MapReduce is a programming model and an
associated implementation for processing and generating
big data sets with a parallel, distributed algorithm on a
cluster.”

In other words, a general and scalable solution to deal
with big data computation on multiple machines.

Abstract Map Reduce

map(key, value) -> list(<k’, v’>)
• Apply function to (key, value) pair
• Outputs set of intermediate pairs

reduce(key, list<value>) -> <k’, v’>
• Applies aggregation function to values
• Outputs result

Split and
distribute data

Aggregate and
compute

results

Word Count – The Hello World of Map Reduce

Bus Car Train
Train Plane Car
Bus Bus Plane

Bus Car Train

Train Plane Car

Bus Bus Plane

Bus 1
Car 1

Train 1

Train 1
Plane 1
Car 1

Bus 2
Plane 1

Bus 2
Bus 1

Car 1
Car 1

Train 1
Train 1

Plane 1
Plane 1

Bus 3

Car 2

Train 2

Plane 2

Bus 3
Car 2

Train 2
Plane 2

Splitting Mapping Intermediate
Splitting Reducing Combining

doMap() doReduce()

A Motivating Problem for Map Reduce

“Find me the closest Starbucks to KAUST.
Actually, I’ll give you a place and something to look for,

and you find me the closest one.
Here’s a 1 TB text file … good luck”

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons
[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks
... ...

In KAUST
In Tokyo, Japan

A Motivating Problem for Map Reduce

(0,0) (0,1) (0,2) (0,3) (0,4)

(1,0) (1,1) (1,2) (1,3) (1,4)

(2,0) (2,1) (2,2) (2,3) (2,4)

(3,0) (3,1) (3,2) (3,3) (3,4)

0 1 2 3 4

0

3

2

1

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons
[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks
... ...

Map to
grids

Reduce to
single files

Split the File and Map Each Chunk Independently (1/2)

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons
[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks
... ...
[42.0, 69.0] Chanak Train Stop
[22.2, 39.2] Burger King
... ...
... ...
... ...
... ...

Mapper

Mapper

Mapping Nodes

Split the File and Map Each Chunk Independently (2/2)

GPS Coordinates Site Name
[22.3, 39.1] Tim Hortons
[22.2, 39.1] KAUST Library
[35.7, 139.7] Starbucks
... ...
[42.0, 69.0] Chanak Train
[22.2, 39.2] Burger King
... ...
... ...
... ...
... ...

Mapper

Mapper

(1,2): [22.3, 39.1] Tim Hortons
(1,2): [22.2, 39.1] KAUST Library
(1,2): ...
(2,4): [35.7, 139.7] Starbucks
(2,4): ...

(1,3): [42.0, 69.0] Chanak Train
(1,3): ...
(1,2): [22.2, 39.2] Burger King
(1,2): ...

KEY <grid>: VALUE <locations and name>
...

Mapping Nodes

(KEY) can appear in multiple mappers

Collect the Mapper Results and Reduce to Single Files (1/2)

Reducer
(1,2)

Reducer
(1,3), (2,4)

(1,2): [22.3, 39.1] Tim Hortons
(1,2): [22.2, 39.1] KAUST Library
(1,2): ...
(2,4): [35.7, 139.7] Starbucks
(2,4): ...

(1,3): [42.0, 69.0] Chanak Train
(1,3): ...
(1,2): [22.2, 39.2] Burger King
(1,2): ...

Reducing Nodes

Collect the Mapper Results and Reduce to Single Files (2/2)

Reducer
(1,2)

Reducer
(1,3), (2,4)

(1,2): [22.3, 39.1] Tim Hortons
(1,2): [22.2, 39.1] KAUST Library
(1,2): ...
(2,4): [35.7, 139.7] Starbucks
(2,4): ...

(1,3): [42.0, 69.0] Chanak Train
(1,3): ...
(1,2): [22.2, 39.2] Burger King
(1,2): ...

KEY <grid>: [
VALUES <locations and names>,
...]

Reducing Nodes (1,2): [
[22.3, 39.1] Tim Hortons,
[22.2, 39.1] KAUST Library,
[22.2, 39.2] Burger King
...]

]

(2,4): [
[35.7, 139.7] Starbucks,
...]

(1,3): [
[42.0, 69.0] Chanak Train Stop,
...],

Word Count – The Hello World of Map Reduce

Bus Car Train
Train Plane Car
Bus Bus Plane

Bus Car Train

Train Plane Car

Bus Bus Plane

Bus 1
Car 1

Train 1

Train 1
Plane 1
Car 1

Bus 2
Plane 1

Bus 2
Bus 1

Car 1
Car 1

Train 1
Train 1

Plane 1
Plane 1

Bus 3

Car 2

Train 2

Plane 2

Bus 3
Car 2

Train 2
Plane 2

Splitting Mapping Intermediate
Splitting Reducing Combining

Mapper nodes

Reducer nodes

Task is automatically
distributed across five

different nodes

Hadoop: An open-source implementation

Apache Hadoop is the most popular open-source
implementation of MapReduce

Runs on top of a distributed filesystem (HDFS)

Try their MapReduce tutorial:
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

How Hadoop Does it

Mapper
Mapping Nodes

Mapper

Reducer
Reducing Nodes

Reducer

Concurrency in Go
Part 2 - Concurrency

CS 240 – Fall 2019
Rec. 2

What is Concurrency?

It’s like parallel that’s not in parallel

What is Parallelism?

f(X)

f(Y) f(Y) = B

f(X) = A

f(X)
f(Y) f(Y) = B

f(X) = A
Sequential

Parallel

Time

What is Concurrency?

f(X)
f(Y) f(Y) = B

f(X) = A
Concurrent

Time

f(X)
f(Y) f(Y) = B

f(X) = A
Sequential

Concurrency Could be Parallel but not Always

f(X)
f(Y) f(Y) = B

f(X) = A
Concurrent but not Parallel

Concurrent and Parallel

Time

f(X)
f(Y) f(Y) = B

f(X) = A

f(Z)
f(W) f(W) = B

f(Z) = A

Parallel is Always Concurrent

f(X)

f(Y) f(Y) = B

f(X) = A

TimeParallel but not Concurrent?

Nope … still concurrent

Parallel → Concurrent
Concurrent ↛ Parallel

Why Care about Concurrency

If something concurrent but not parallel takes as much
time as something sequential, why make it concurrent?

f(X)
f(Y) f(Y) = B

f(X) = A
Concurrent

Time
f(X)
f(Y) f(Y) = B

f(X) = ASequential

Concurrency is a Design Pattern

”Concurrency is not Parallelism” by Rob Pike : https://talks.golang.org/2012/waza.slide#1

“Concurrency is about dealing with lots of things at once.
Parallelism is about doing lots of things at once.”

- Rob Pike

Distributed Systems are Unpredictable

Servers need to react to:
• Others servers
• Crashes
• Users
• …

Making Bank Deposits Concurrent (1/5)

Server Database

0

Add($10)

Add($10)

Time

Making Bank Deposits Concurrent (2/5)

Server

Read
x = 0

Database

0

Add($10)

Add($10)

$0
read

Time

Making Bank Deposits Concurrent (3/5)

Server

Read
x = 0

x += 10
Write x

Database

10

Add($10)

Add($10)

$0
read

$10

Time

Making Bank Deposits Concurrent (4/5)

Server

Read
x = 0

x += 10
Write x

Read
x = 10

Database

10

Add($10)

Add($10)

$0
read

$10

$10
read

Time

Making Bank Deposits Concurrent (5/5)

Server

Read
x = 0

x += 10
Write x

Read
x = 10

x += 10
Write x

Database

20

Add($10)

Add($10)

$0
read

$10

$10
read

$20Time

Concurrent Bank Deposits! Yay? (1/5)

Server Database

0

Add($10)

Add($10)

Time

Concurrent Bank Deposits! Yay? (2/5)

Server

Read
x = 0

Database

0

Add($10)

Add($10)

$0
read

Time

Concurrent Bank Deposits! Yay? (3/5)

Server

Read
x = 0
Read
x = 0

Database

0

Add($10)

Add($10)

$0
read

$0
read

Time

Concurrent Bank Deposits! Yay? (4/5)

Server

Read
x = 0
Read
x = 0

x += 10
Write x

Database

10

Add($10)

Add($10)

$0
read

$10

$0
read

Time

Concurrent Bank Deposits! Yay? (5/5)

Server

Read
x = 0
Read
x = 0

x += 10
Write x
x += 10
Write x

Database

10

Add($10)

Add($10)

$0
read

$10

$0
read

$10
Time

Concurrency Needs to be Synchronized

Locks – limit access using shared memory
Channels – pass information using a queue

Visualize Everything We’ve Learned

And also see many different methods of
achieving synchronization:

http://divan.github.io/posts/go_concurrency_visualize/

http://divan.github.io/posts/go_concurrency_visualize/

