Scaling Out Key-Value Storage:
Dynamo

alllauc Ellall aealy

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 10

Marco Canini

Availability: vital for web applications

* Web applications are expected to be “always on”
— Down time - pisses off customers, costs $

« System design considerations relevant to availability
— Scalability: always on under growing demand

— Reliability: always on despite failures

— Performance: 10 sec latency considered available?

“an availability event can be modeled as a long-
lasting performance variation”
(Amazon Aurora SIGMOD '17)

Scalability: up or out?

» Scale-up (vertical scaling)
— Upgrade hardware

— E.g., MacBook Air = MacBook Pro
— Down time during upgrade; stops working quickly

« Scale-out (horizontal scaling)
— Add machines, divide the work
— E.g., a supermarket adds more checkout lines
— No disruption; works great with careful design

Reliability: available under failures

* More machines, more likely to fail
— p = probability a machine fails in given period
— n = number of machines
— Probability of any failure in given period = 1—=(1-p)"

« For 50K machines, each with 99.99966% available
— 16% of the time, data center experiences failures

* For 100K machines, failures happen 30% of the time!

Two questions (challenges)

* How is data partitioned across machines so the
system scales?

* How are failures handled so the system is always on?

Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

Amazon in 2007

Client Requests

« 10%s of servers in multiple DCs

— 106s of servers, 80+ DCs (as of now) \ l /
Y=
- & : ; " " enngtS
« 107s of customers at peaks I o
— 20M+ purchases in US (Prime Day '20) i \- / | |
I Request Routing :
i i
. . i
- Tiered architecture (similar today) 1 Jaorsostr
— Service-oriented architecture <
— Stateless web servers ~ |
& aggregators REgg g g
— Stateful storage servers r"l' __ ———————— _{__\
/K :’)’ ‘-‘J i 3 :
:r "j) R LI)J i
il !
- --D;:n; m-sl:n:es- ---------- Other datasiores

7

Dynamo requirements

Highly available writes despite failures

— Despite disks failing, network routes flapping, “data centers
destroyed by tornadoes”

— Always respond quickly, even during failures - replication

Low request-response latency: focus on 99.9% SLA

— E.g., “provide a response within 300ms for 99.9% of its requests for
peak client load of 500 regs/s”

Incrementally scalable as servers grow to workload
— Adding “nodes” should be seamless

Comprehensible conflict resolution
— High availability in above sense implies conflicts

Basics in Dynamo

» Basic interface is a key-value store (vs. relational DB)
— get(k) and put(k, v)
— Keys and values opaque to Dynamo

* Nodes are symmetric
— P2P and DHT context

Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

10

Consistent hashing recap

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@| Stores key 1
@® Identifiers/key space

[] Node 3.bit

Stores key 6 |@|6 ID space 2

Incremental scalability
(why consistent hashing)

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@| Stores key 1
@® Identifiers/key space

[] Node 3.bit

Stores key 6 |@|6 ID space 2

Incremental scalability
(why consistent hashing)

« Minimum data is moved around when nodes join and leave

« Please try modular hashing and see the difference

Keys 4 ~0 Keys 6 ~ 0

3-bit ,/ Transfer
ID space — /] Keys 4,5

Challenge: unbalanced load

* Nodes are assigned different # of keys

Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

3-bit
Keys 5,6 (@/6 |pgpace 2[@Keys1,2

Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

| 3-bit
Keys 5, 6 3l 6 ID space

Keys 5,6,7,0

2 |@®| Keys 1, 2

18

Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

« Some keys are more popular

3-bit
Keys 5,6 (@/6 |pgpace 2[@Keys1,2

Best seller item mmp

Solution: virtual nodes (vhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids = same physical node

3-bit

ID space

Solution: virtual nodes (vhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids = same physical node

4 physical nodes (servers) 3-bit
2 vnodes / server ‘ @6 ID space 2

D Virtual node:
same color - same physical node

Solution: virtual nodes (vhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids = same physical node

I
/
Orange server leaves ‘ p 3-bit
Keys moved to blue and red xG ID space

D Virtual node:
same color - same physical node

Solution: virtual nodes (vhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids = same physical node

* More virtual nodes, more balanced

» Faster data transfer for join/leave

e Controllable # of vnodes / server

— Server capacity:
e.g., CPU, memory, network

!
/ 3-bit
xG ID space

D Virtual node:
same color - same physical node

23

Gossip and “lookup”

Gossip: Once per second, each node contacts a
randomly chosen other node

— They exchange their lists of known nodes
(including virtual node IDs)

Assumes all nodes will come back eventually, doesn't
repartition

Each node learns which others handle all key ranges

— Result: All nodes can send directly to any key’s
coordinator (“zero-hop DHT”)

* Reduces variability in response times

24

Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

25

Preference list (data replication)

» Key replicated on M vnhodes
— Remember “r-successor” in DHT?

 All M vnodes on distinct servers across different datacenters

3-bit \

®6 |Dspace 2@

D Virtual node:
5 colors = 5 physical nodes

26

Preference list (data replication)

» Key replicated on M vnhodes
— Remember “r-successor” in DHT?

 All M vnodes on distinct servers across different datacenters
Key 0

Key 0’s Preference list could be
vnodes: {0, 1, 3, 5} mapping to servers:
{green, red, , blue}

1 Green is the coordinator server of key Oj

®6 |Dspace 2@

01

D Virtual node:
5 colors = 5 physical nodes

27

Read and write requests

* Received by the coordinator (this is not Chord)
— Either the client (web server) knows the mapping or re-routed

« Sentto in preference list (coordinator incl.)
— Durable writes: my updates recorded on multiple servers
— Fast reads: possible to avoid straggler

« Awrite creates a new immutable version of the key (no overwrite)
— Multi-versioned data store

* Quorum-based protocol
— Awrite succeeds if W out of N servers reply (write quorum)
— Aread succeeds if R out of N servers reply (read quorum)

Quorum implications (W, R, and N)

* N determines the durability of data (Dynamo N = 3)

W and R adjust the availability-consistency tradeoff
— W =1 (R = 3): fast write, weak durability, slow read
— R=1 (W = 3): slow write, good durability, fast read
— Dynamo: W =R =2

« WhyW+R>N?
— Read and write quorums overlap when there are no
failures!
— Reads see all updates without failures

 WWhat if there are failures?

29

Failure handing: sloppy quorum +
hinted handoff

« Sloppy: not always the same servers used in N
— First N servers in the preference list without failures
— Later servers in the list take over if some in the first N fail

« Consequences

— Good performance: no need to wait for failed servers in N to
recover

— Eventual (weak) consistency: conflicts are possible, versions
diverge

— Another decision on !

Failure handing: sloppy quorum +
hinted handoff

« Key O’s preference list {green, red, , blue}
 N=3:{green, red, } without failures
* |f red fails, requests go to {green, blue} Key 0

* Hinted handoff
— Blue temporarily serves requests
— Hinted that red is the intended recipient
— Send replica back to red when red is on ® 5

ID space 2@

Key 0 3 & Key 0

D Virtual node:
5 colors = 5 physical nodes

Wide-area replication

« Lastq], § 4.6: Preference lists always contain nodes
from more than one data center

— Consequence: Data likely to survive failure of
entire data center

* Blocking on writes to a remote data center would
Incur unacceptably high latency

— Compromise: W < N, eventual consistency
— Better durability & latency but worse consistency

32

Conflicts

o« SupposeN=3, W=R=2 nodesareA,B,C,D, E
— CL1 put(k, ...) completes on A and B
— CL2 put(k, ...) completeson Cand D

« Conflicting results from A,Band C, D
— Each has seen a different put(k, ...)

* How does Dynamo handle conflicting versions?

33

An example of conflicting writes
(versions)

Preference list (M =5, N = 3)
‘A B C! D E

4NN BEN EEN NN BEN BN SN BN BN BN BN B S e

Shopping cart:

CL1: Add Item x

A and B fail

=
dmmmmmm e om S
®

An example of conflicting writes
(versions)

Preference list (M =5, N = 3)
Shopping cart:

CL1: Add Item x
A and B fail

CL2: Add ltem y

=
dmmmmmm e om S
®

An example of conflicting writes
(versions)

Preference list (M =5, N = 3)
‘A B CI D E

—]
3
o)

Shopping cart:

4NN EEN EEN NN BEN BN NN BEN BN BN BN B e e

i
i
i
!

CL1: Add Item x : X X
i
i

A and B fail :

i

CL2: Add Item y | y y
i
i

A and B recover :
i
i

CL1: Read cart J read read

Vector clocks: handling conflicting
versions

Time
. ! -
Shopping cart: i LA _____ ? _____ 9:: D E
|
CL1: Add Item x I X X
L (A1) (A1)
_______________________ L.
{ Read returns 3
i x (A1) andy(C,1) |
. (Aland(Clare | y Y
i not causally related: " _ (C,1) (C.1)
' conflicts! AN,
B S .
CL1: Read cart i read read

Version vectors (vector clocks)

List of (coordinator node, counter) pairs
-e.g, [(A, 1), (B, 3), ...]

* Dynamo stores a version vector with each stored key-
value pair

 ldea: track “ancestor-descendant” relationship
between different versions of data stored under the

same key k

Version vectors: Dynamo’s mechanism

* Rule: If vector clock comparison of v1 <v2, then the first is
an ancestor of the second — Dynamo can forget v1

« Each time a put() occurs, Dynamo increments the counter
in the V.V. for the coordinator node

« Each time a get() occurs, Dynamo returns the V.V. for the
value(s) returned (in the “context”)

— Then users must supply that context to put()s that
modify the same key

39

Dynamo’s system interface

« get(key) = value, context
— Returns one value or multiple conflicting values
— Context describes version(s) of value(s)

» put(key, context, value) - “OK”

— Context indicates which versions this version
supersedes or merges

Conflict resolution (reconciliation)

If vector clocks show causally related (not really
conflicting)

— System overwrites with the later version

For conflicting versions

— System handles it automatically, e.q., last-writer-
wins (limited use case)

— Application specific resolution (most common)

* Clients resolve the conflict , €.9., merge
shopping cart

Vector clocks: handling conflicting

versions

Shopping cart:

CL1: Add Item x
CL2: Add ltem y

CL1: Read cart
X (A1), y (C,1)

=
dmmmmmm e om S
®

Preference list (M =5, N = 3)
‘A B CI D E

4NN EEN EEN NN BEN BN NN BEN BN BN BN B e e

X X
(A1) (A1)

y y
(C.1) (C,1)

Vector clocks: handling conflicting

versions

Shopping cart:
CL1: Add Item x
CL2: Add ltem y

CL1: Read cart
X (A1), y (C,1)

CL1: Add Item z
X, ¥, z [(A,1), (C,1)]

=
dmmmmmm e om S
®

Preference list (M =5, N = 3)

A__B G D E
X X
(A1) (A1)
y y
(C.1) (C,1)

43

Vector clocks: handling conflicting

versions

—]
3
o)

Shopping cart:
CL1: Add Item x
CL2: Add ltem y

CL1: Read cart
X (A1), y (C,1)

CL1: Add Item z
X, ¥, z [(A,1), (C,1)]

Qe o

Preference list (M =5, N = 3)

A__B__G D E
X X
(A1) (A1)
y |y
(C,1) (C,1)
Xyz Xyz

(A,2,C,1)(A,2, C,1)

44

Anti-entropy (replica synchronization)

* Hinted handoff node crashes before it can replicate
data to node in preference list

— Need another way to ensure that each key-value
pair is replicated N times

* Mechanism: replica synchronization
— Nodes nearby on ring periodically gossip
» Compare the (k, v) pairs they hold
« Copy any missing keys the other has

r How to compare and copy replica
i state quickly and efficiently?

45

Efficient synchronization with Merkle trees

Merkle trees hierarchically summarize the key-value
pairs a node holds

One Merkle tree for each virtual node key range

— Leaf node = hash of one key’s value
(# of leaves = # keys on the virtual node)

— Internal node = hash of concatenation of children
* Replicas exchange trees from top down, depth by depth

— If root nodes match, then identical replicas, stop
— Else, go to next level, compare nodes pair-wise

46

Merkle tree reconciliation

* B is missing orange key; A is missing green one

« Exchange and compare hash nodes from root
downwards, pruning when hashes match

A’s values: B’s values:
[O 2128 [O 2128)

[O 2127: I‘ 2127 2128 [O 2127i ; 2127 2128

| Finds differing keys quickly and with
minimum information exchange i

Failure detection and ring membership

Server A considers B has failed if B does not reply to A's
message

— Evenif B replies to C
— A then tries alternative nodes

With servers join and permanently leave

— Servers periodically send gossip messages to their
neighbors to sync who are in the ring

— Some servers are chosen as seeds, i.e., common
neighbors to all nodes

How useful is it to vary N, R, W?

NRWBehavior

3 2 2 Parameters from paper:
Good durability, good R/W latency

49

How useful is it to vary N, R, W?

NRWBehavior

3 2 2

Parameters from paper:
Good durability, good R/W latency

Slow reads, weak durability, fast writes
Slow writes, strong durability, fast reads
More likely that reads see all prior writes?
Read quorum may not overlap write quorum

50

Dynamo: Take-aways ideas

* Avalilabllity is important
— Systems need to be scalable and reliable

* Dynamo is eventually consistent
— Many design decisions

* Core techniques
— Consistent hashing: data partitioning

— Replication, preference list, sloppy quorum, hinted
handoff: availability under failures

— Vector clocks: conflict resolution (partly automatic, rest app.)
— Anti-entropy: synchronize replicas
— Gossip: synchronize ring membership

