
Course Overview

CS 240: Computing Systems and Concurrency
Lecture 2

Marco Canini

• Keep it real! This is the real world:
– Things break. Components fail.
– Latency matters. Can’t beat speed of light.
– Certain things are impossible. Need work arounds.

• How do we build systems that work at very large
scale and tolerate failures?

• Given systems span many nodes, how do we
enable different nodes to agree on “things” (e.g.,
time, order of operations, state of the system)?

2

Philosophy and Recurring Themes

• Reasoning about concurrency

• Reasoning about failure
• Reasoning about performance

• Building systems that correctly handle concurrency
and failure

• Knowing specific system designs and design
components

3

Learning Objectives

• Gain an understanding of the principles and
techniques behind the design of modern, reliable,
and high-performance systems

• In particular learn about distributed systems
– Learn general systems principles (modularity,

layering, naming, security, ...)
– Practice implementing real, larger systems that

must run in nasty environment
• One consequence: Must pass exams and

projects independently as well as in total
– Note, if you fail either you will not pass the class

4

Course Goals

• Course: many topics, grouped around key areas
• Might feel like lectures are disconnected…
• ... and first need to cover some background

• Big Picture:
– real systems have complex requirements that span

the concepts of multiple topics
– E.g., we want fault tolerance, consistency and

scalability

5

Keep the Big Picture in Mind

Course Organization

6

http://sands.kaust.edu.sa/classes/CS240/F21/

• Lecture
– Professor Marco Canini
– Slides available on course website
– Office hours: right after lecture or by appointment

• TAs
– Arnaud Dethise: M 10:00-11:30, 1-4409-WS18

• Main Q&A forum: www.campuswire.com
– No anonymous (to instructors) posts or questions
– Can send private messages to instructors

7

Learning the material: People

http://www.campuswire.com/

Learning the Material: Books

• Lecture notes!

• No required textbooks
• References on website available in the Library:

– Programming reference:
• The Go Programming Language. Alan Donovan and

Brian Kernighan
– Topic reference:

• Distributed Systems: Principles and Paradigms. Andrew
S. Tanenbaum and Maaten Van Steen

• Guide to Reliable Distributed Systems. Kenneth Birman
8

Grading

• Four programming assignments (50% total)
– 10% each for 1 & 2
– 15% each for 3 & 4

• Two exams (50% total)
– Midterm exam on October 6 (15%)
– Final exam during exam period (35%)

9

• Test learning objectives mostly using designs covered in lectures

• And test knowledge of specific design patterns and designs

• Open book (but if you don’t study it will create time pressure)

• Recipe for success:
– Attend lecture and actively think through problems
– Ask questions during lecture and afterwards in my office hours
– Actively work through problems
– Complete programming assignments
– Study lecture materials for specific design patterns and designs
– Run the system designs in your mind and see what happens

10

Exams

• Systems programming somewhat different from what
you might have done before
– Low-level (C / Go)
– Often designed to run indefinitely (error handling must

be rock solid)
– Must be secure - horrible environment
– Concurrency
– Interfaces specified by documented protocols

• TAs’ Office Hours
• Read: Dave Andersen’s “Software Engineering for

System Hackers”
– Practical techniques designed to save you time & pain

11

About Assignments

https://www.cs.cmu.edu/~dga/systems-se.pdf

• Easy concurrency w/ goroutines (lightweight
threads)

• Garbage collection and memory safety
• Libraries provide easy RPC
• Channels for communication between goroutines

12

Why use Go?

• Google, of course!
• Docker (container management)
• CloudFlare (Content delivery Network)
• Digital Ocean (Virtual Machine hosting)
• Dropbox (Cloud storage/file sharing)
• … and many more!

13

Where is Go used?

• Reinforce / demonstrate all learning objectives!

• 1: Sequential Map/Reduce (due September 16)
• 2: Distributed Map/Reduce (due September 23)
• 3-1: Raft Leader Election (due November 16)
• 3-2: Raft Log Consensus (due December 2)
• 4: Key-Value Storage Service (due December 9)

14

About Assignments

• Recipe for disaster
– Start day assignment is due
– Write code first, think later
– Test doesn’t pass => randomly flip some bits
– Assume you know what program is doing

15

Programming Assignments

• Recipe for success
– Start early (weeks early)
– Think through a complete design
– Progressively build out your design (using tests to

help)
– Checkpoint progress in git (and to gitlab) frequently
– Debug, debug, debug

• Verify program state is what you expect (print it out!)
• Write your own smaller test cases
• Reconsider your complete design

– Attend office hours

16

Programming Assignments

• Working together important
– Discuss course material
– Work on problem debugging

• Parts must be your own work
– Midterm, final, programming assignments

• What we hate to say: we run cheat checkers…
they work surprisingly well

• Please *do not* put code on *public* repositories

17

Policies: Collaboration

Policies: Write Your Own Code
Programming is an individual creative process. At first,

discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, README
description, or any part of submitted assignment. This
includes character-by-character transliteration but also
derivative works. Cannot use another’s code, etc. even
while “citing” them.

Writing code for use by another or using another’s code is
academic fraud in context of coursework.

Do not publish your code e.g., on Github, during/after course!
18

• 72 late hours to use throughout the semester
– (but not beyond December 9)

• After that, each additional day late will incur a
10% lateness penalty
– (1 min late counts as 1 day late)

• Submissions late by 3 days or more will no longer
be accepted
– (Fri and Sat count as days)

• In case of illness or extraordinary circumstance
(e.g., emergency), talk to us early!

19

Policies: Late Work

• Attend lecture, attend labs, think actively!

• Start programming assignments early, use the right strategy!

20

Summary

And for some technical bits today …
Distributed Systems and Correctness

21

• Assume a distributed storage
– Clients can read and write files

22

Client

Server1

S2
S3

Example

• N processes p1,…,pN in the system (no process failures)
– Every process executes an algorithm

• An automation with set of states, set of inputs, set of
outputs and a state transition function S x I à S x O

• There are two first-in, first-out, unidirectional channels
between every process pair pi and pj
– Call them channel(pi, pj) and channel(pj, pi)

– All messages sent on channels arrive intact and in order

– Channel cannot duplicate, create or modify messages

23

System model

• Message passing

• No failures (for now)

• Two possible timing assumptions
1. Synchronous System
2. Asynchronous System

• No upper bound on message delivery
• No bound on relative process speeds

24

System model

• Assume a distributed storage
– Clients can read and write files

25

Client

Server1

S2
S3

Example execution

• Processes execute sequences of events
– events can be of 3 types: local, send or receive

• An execution (or run) is a sequence of events that respect
the system-wide distributed algorithm
– each process is consistent with the local sequences
– a message is sent by a process only if its (local)

algorithm prescribes it to do it given the preceding
sequence of its inputs

– every received message was previously sent, and no
message is received twice

26

Execution of the system

• A graphic representation of distributed execution

27

Space-Time diagrams

Server1

S2

C

S1

S2

A B

FE

C D
Time →

C

H I

G

J

• Generally, a failure occurs when a process deviates from
the algorithm assigned to it

• A process is correct if it never fails

• crash failure: the faulty process prematurely stops taking
steps of its algorithm

• A typical assumption is that, in every possible execution out
of N processes, at most f < N can be faulty

• We call such a system f-resilient
28

Common failure assumption

Safety and liveness properties

29

• This is hard!
– How do we design fault-tolerant systems?
– How do we know if we’re successful?

• Often use “properties” that hold true for every
possible execution

• We focus on safety and liveness properties

30

Reasoning about fault tolerance

• Property: a predicate that is evaluated over a
run of the system
– “every message that is received was previously

sent”

• Not everything you may want to say about a
system is a property:
– “the program sends an average of 50

messages in a run”

31

Properties

• “Bad things” don’t happen, ever
– No more than k processes are simultaneously in

the critical section
– Messages that are delivered are delivered in

causal order

• A safety property is “prefix closed”:
– if it holds in a run, it holds in every prefix

32

Safety properties

• “Good things” eventually happen
– A process that wishes to enter the critical section

eventually does so
– Some message is eventually delivered
– Eventual consistency: if a value doesn’t change,

two servers will eventually agree on its value

• Every run can be extended to satisfy a liveness
property
– If it does not hold in a prefix of a run, it does not

mean it may not hold eventually

33

Liveness properties

• “Good” and “bad” are application-specific
• Safety is very important in banking transactions

– May take some time to confirm a transaction

• Liveness is very important in social networking
sites
– See updates right away

34

Often a trade-off

• Attend lecture, attend labs, think actively!

• Start programming assignments early, use the right strategy!

• Super cool distributed systems stuff starts Monday!

35

Conclusion

